

Borg Panel Manufacturing, Oberon NSW

Traffic Impact Assessment Report

30011699

For: Borg Construction Date: 06 May 2016

Project Name:		Borg Panels, Oberon Traffic Impact Assessment				
Intern	al Reference:	30011699				
Report	t prepared for:	Borg Construction				
REVIEWS AND APPROVALS FOR ISSUE						
Revision	Date	Author	Reviewer	Approval		
0	02/12/2015	S Botross	N Vukic	M Haverland		
1	16/12/2015	S Botross	N Vukic	M Haverland		
2	22/04/2016	S Botross	J Hedge	M Haverland		
3	06/05/2016	S Botross	J Hedge	M Haverland		

TABLE OF CONTENTS

1.	1. INTRODUCTION1						
1.1	Backgro	ound1					
1.2	Scope						
2.	DEVELOF	PMENT PROPOSAL					
2.1	Site location						
2.2	Proposed development plan						
3.	EXISTING	CONDITIONS ASSESSMENT					
3.1	1 Land use						
3.2	Existing	road network					
	3.2.1	Lowes Mount Road					
	3.2.2	Albion Street					
	3.2.3	Horace Street					
	3.2.4	Endeavour Street					
	3.2.5	O'Connell Road					
3.3	Public t	ansport facilities9					
3.4	Pedestri	an and cyclist network9					
3.5	Intersec	tion analysis9					
	3.5.1	Traffic count surveys					
	3.5.2	Summary of results for existing conditions					
4.	TRAFFIC	IMPACT ASSESSMENT 13					
4.1	Proposa	I overview13					
4.2	Constru	ction phase13					
	4.2.1	Construction traffic generation					
	4.2.2	Construction impacts					
4.3	Operatio	onal phase					
	4.3.1	Operational traffic generation					
	4.3.2	Site access					
	4.3.3	Operational impacts 17					
5.	PARKING	ASSESSMENT					
5.1	Car park	king provision					
	5.1.1	Accessible parking provision					
5.2	2 Car parking layout						
6.	MITIGATI	ON AND MANGAGEMENT MEASURES24					

APPENDIX A: PROPOSED SITE LAYOUT

APPENDIX B: TRAFFIC SURVEY DATA

APPENDIX C: VEHICLE TURNING MOVEMENTS (EXISTING CONDITIONS) APPENDIX D: SIDRA INTERSECTION RESULTS (EXISTING CONDITIONS) APPENDIX E: VEHICLE TURNING MOVEMENTS (OPERATIONAL CONDITIONS) APPENDIX F: SIDRA INTERSECTION RESULTS (OPERATIONAL CONDITIONS)

1. INTRODUCTION

1.1 Background

SMEC Australia Pty Ltd (SMEC) was engaged by Borg Construction to prepare a Traffic Impact Assessment (TIA) Report for the proposed expansion of the existing Medium-Density Fibreboard (MDF) manufacturing facility located at 124 Lowes Mount Road, Oberon NSW.

This report was prepared to support the lodgement of a development application to Oberon Council and Department of Planning and Environment seeking approval for the proposed development and addresses the requirements of the Secretary's Environmental Assessment Requirements (SEARs) dated 28 May 2015.

1.2 Scope

This report investigates the expected traffic impacts as a result of the proposed development. The purpose of the TIA is to:

- Review the existing transport network
- Determine the impacts on the road network during the construction phase
- Determine the impacts of additional traffic on the existing transport network
- Recommend mitigation and management measures to minimise the impacts identified.

The remainder of this report is structured as follows:

- Section 2 describes the development proposal
- Section 3 describes the existing traffic conditions based on traffic survey data collected for this study
- Section 4 assesses the traffic impacts associated with the construction and operational phases of the proposed development at the start of the operational phase in 2019 and at the end of a 10-year period in 2029
- Section 5 details the parking requirements as per the Oberon Council Development Control Plan (DCP)
- Section 6 describes the mitigation and management measures recommended to minimise the impacts identified in Section 4.

2. DEVELOPMENT PROPOSAL

2.1 Site location

The subject site is located at 124 Lowes Mount Road, Oberon within the local government area (LGA) of Oberon. The site is currently occupied by a MDF processing facility and is located within the northern outskirts of the Oberon township, approximately 1.5 kilometres from the town centre.

The site comprises Lot 26 DP 1200697 and occupies an area of approximately 40 hectares.

Lowes Mount Road forms the western boundary of the site; unoccupied land is located to the north and east; and a sporting field and various light industrial sites form the southern boundary. Further south of the site are the town centre and general residential region of Oberon. The subject site and its surroundings are shown in Figure 2-1.

Figure 2-1: Subject site locality

Existing access points along Lowes Mount Road are either boom-gate operated or supervised by site personnel. Vehicles accessing the site include staff private vehicles and contractors' heavy vehicle fleet, which consists of 19 metre semi-trailers and 19-26 metre B-double trucks. Staff and visitor access are to be provided via Gate 4 while deliveries and despatch would occur via Gates 4 and 6 which are located on Lowes Mount Road. Access points are illustrated in Figure 2-2.

Figure 2-2: Site access

2.2 Proposed development plan

The proposed development at the Borg site will involve the expansion of existing manufacturing and storage facilities to enable greater MDF and new particle board production line. Development works will include the construction of the following key infrastructure:

- A log yard, chipping area, silos, flaking building
- Dryer and screening areas
- New production hall and administration area
- Automated moulding, particle board, laminated board and finished board warehouses
- Additional moulding operation, laminating line and sanding line
- Installation of two new paper treaters and storage system.

The extent of the proposed expansion works as well as existing and proposed infrastructure are illustrated in Figure 2-3.

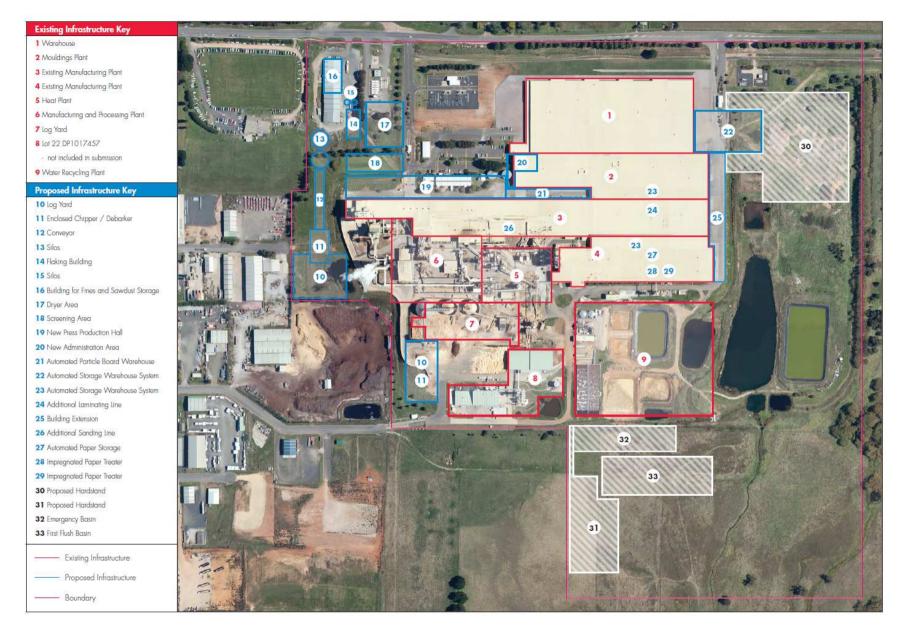


Figure 2-3: Existing and proposed infrastructure (Source: Borg Construction, 5 May 2016)

Currently, there are 114 car parking spaces supplied onsite for staff, which are accessible via Gate 4. An additional 117 car spaces are proposed to accommodate the increase in staffing in 2029. There is to be a total of 231 car spaces allocated for the future development. It is noted that the car park will also be utilised by construction personnel during the construction phase of the development while any parking overflow will be allotted in proposed hardstands.

Staff and delivery personnel will access the site via Gates 4 and 6, which are to be equipped with a new swipe-card entry system. A heavy vehicle circulation route internal to the site is proposed and will assist in the movement of trucks from the gate houses to the required destinations.

Visitor parking spaces are to be provided prior to the secured gate at Gate 4 while existing visitor spaces at Gate 6 are to be removed. The proposed onsite parking layout is contained in Appendix A.

3. EXISTING CONDITIONS ASSESSMENT

3.1 Land use

As per the Oberon Council Local Environmental Plan (LEP) 2013, the land zone classification of the subject site is IN1 General Industrial. The surrounding land uses include primary production, general and large-lot residential and forestry.

The objectives for an IN1 General Industrial zone as stated in the LEP are to offer a range of industrial and warehouse land uses, encourage employment opportunities, minimise adverse impacts of the industry on other land uses, and support and protect industrial land for such uses.

3.2 Existing road network

A site investigation was undertaken on Tuesday 25 August 2015 to identify current traffic conditions and develop an appreciation of the site and its surrounding road network. The key observations made during the site visit have been incorporated in this report.

3.2.1 Lowes Mount Road

Lowes Mount Road is a two-way single lane road with a north-south alignment. The carriageway width varies between 8 and 15 metres where the latter accommodates a separated right-turn lane into the subject site. Site access is provided off Lowes Mount Road via Gate 4 and Gate 6. A right-turn lane that is 60 metres in length is provided at the Gate 6 entry.

Formalised on-street parking is not provided along Lowes Mount Road. However, a wide grass verge provides sufficient parking area for vehicles adjacent to the carriageway.

Lowes Mount Road has a speed limit of 60 kilometres per hour at its southern end and 100 kilometres per hour north of the site. A pedestrian and cyclist shared path runs parallel to Lowes Mount Road along the eastern side of the road. There are no pedestrian crossing facilities within the immediate area surrounding the site.

Within the vicinity of the site, pavement linemarking is faded and raised pavement markers have reduced reflectivity due to wear by traffic. The road pavement condition varies between good and poor along its length. During the site inspection, sections of road were observed to be newly resurfaced while other areas remained damaged.

Figure 3-1 shows Lowes Mount Road within close proximity to the subject site.

Figure 3-1: Lowes Mount Road (looking south), just north of Gate 6

3.2.2 Albion Street

Albion Street is a single lane, two-way road with an east-west configuration. The carriageway is approximately 18 metres wide; it comprises of a single traffic lane and 4.5-metre wide kerbside lanes in both directions. Albion Street forms part of the heavy vehicle route between Oberon and the Sydney greater metropolitan area, and mostly consists of light industrial land uses.

Albion Street has a sign posted speed limit of 60 kilometres per hour within the town and 70 kilometres per hour near the town outskirts. Towards its western end, pavement linemarking is faded and the road pavement is considered to be in poor condition. Pedestrian footpaths are not provided along its length.

Figure 3-2 shows a cross-section of Albion Street near its intersection with Endeavour Street.

Figure 3-2: Albion Street (looking west) at its intersection with Endeavour Street

3.2.3 Horace Street

Horace Street has a north-south alignment and is located toward the southern boundary of the subject site. It is around 270 metres in length and is a no-through road at its northern end.

Horace Street functions as an access road for multiple industrial and warehouse facilities. The intersection of Horace Street with Albion Street is a give way control. However, there are no signs and linemarking to enforce controls at the intersection.

3.2.4 Endeavour Street

Endeavour Street has a north-south alignment with a 12-metre wide undivided carriageway. Unrestricted on-street parking is permitted along both sides of Endeavour Street.

Endeavour Street is a no-through road with a U-turn bay at its northern end. The signposted speed limit on Endeavour Street is 50 kilometres per hour. Its intersection with Albion Street is a give way control.

3.2.5 O'Connell Road

O'Connell Road is a divided two-way single-lane street with a north-south alignment. The unsealed road verge varies in width between approximately 2 and 5 metres. On-street parking is not formally provided along O'Connell Road and there are no pedestrian or cyclist facilities along the corridor.

The speed limit along O'Connell Road is 60 kilometres per hour at its southern end. The speed limit increases to 100 kilometres per hour about 300 metres north of the O'Connell Road/

Albion Street roundabout. O'Connell Road forms the heavy vehicle route between Oberon and Bathurst.

3.3 Public transport facilities

Public transport facilities are not provided within the area surrounding the proposed development site.

3.4 Pedestrian and cyclist network

A shared pedestrian and cyclist pathway is provided along the site frontage on Lowes Mount Road. The path is 1.5 metres wide and has an asphaltic surface. Footpaths and kerb ramps are generally provided on both sides of North Street and at most intersections between the site and the Oberon town centre.

The adjacent roadway is considerably elevated in comparison to the pathway and is physically separated by a wide grass verge which varies between three and eight metres. A typical cross section of the shared pedestrian and cyclist path, with warning signage of the road ahead, is shown in Figure 3-3.

Pedestrian and bicycle pathway warning signage is installed at the site access points at both Gate 4 and Gate 6 on Lowes Mount Road (Figure 3-4).

Figure 3-3: Shared path existing condition

Figure 3-4: Warning signage for shared path crossing

3.5 Intersection analysis

3.5.1 Traffic count surveys

SMEC commissioned traffic surveys at key locations surrounding the subject site. The purpose of the surveys was to determine existing traffic conditions at key intersections. Figure 3-5 illustrates the location of surveys commissioned.

Surveys were conducted at the following intersections:

- Site 1: Abercrombie Road and Rupert Street (give way)
- Site 2: O'Connell Road and Albion Street (give way)

- Site 3: Lowes Mount Road and Albion Street (give way)
- Site 4: Albion Street and Horace Street (give way)
- Site 5: Albion Street and Endeavour Street (give way)
- Site 6: North Street and Carrington Avenue (give way)
- Site 7: Oberon Street, Ross Street and unnamed road (give way)
- Site 8: Duckmaloi Road and Albion Road (give way).

These surveys were undertaken on Tuesday 25 August 2015 during the morning (6am to 9am) and afternoon (3pm to 6pm) peak periods.

Continuous mid-block traffic surveys were undertaken for a one-week period between Tuesday 25 August and Tuesday 1 September 2015, at the following locations:

- O'Connell Road (north of Albion Street)
- Lowes Mount Road (north of Albion Street)
- Duckmaloi Road (south-east of Albion Street).

Figure 3-5 shows the location of the traffic survey locations while the survey data is provided in Appendix B.

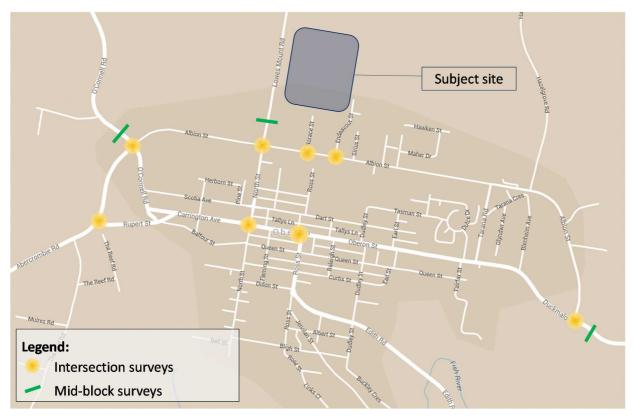


Figure 3-5: Key intersection and mid-block survey sites

3.5.2 Summary of results for existing conditions

SIDRA Intersection, version 6.1, was used to assess the performance of the eight intersections listed in Section 3.5.1 of this report. Table 3-1 indicates the Roads and Maritime Services (Roads and Maritime) levels of service criteria. Level of service D or better is generally accepted as appropriate operation.

Level of service	Average delay (sec)	Stop, give way or yield signs	Traffic signals and roundabouts
Α	<14	Good operation	Good operation
В	15 to 28	Acceptable delays and spare capacity	Good operation with acceptable delays
С	29 to 42	Satisfactory but accident study required	Satisfactory
D	43 to 56	Near capacity, crash study required	Operating near capacity
Е	57 to 70	At capacity requires other control mode	At capacity, at signals, incidents will cause excessive delays
F	>70	At capacity with long delays	At capacity with long delays

Table 3-1: Roads and Maritime level of service criteria

Existing vehicle turning movements at the key intersections have been included in this report as Appendix C while detailed results of the SIDRA intersection performance assessment are provided in Appendix D. Existing conditions at the key intersections for both the AM and PM peak hours are summarised in Table 3-2 and Table 3-3, respectively.

The key findings from the intersection analysis are that all intersections are currently operating at an acceptable level of service A during both AM and PM peak periods.

 Table 3-2: Existing conditions – intersection analysis results, AM peak hour

Intersection	Existing conditions				
	Queue length (m)	Average delay (s)	Degree of saturation	Level of service ⁽¹⁾	
Site 1: Abercrombie Road - Rupert Street	1	3.7	0.04	А	
Site 2: O'Connell Road - Albion Street	3	5.4	0.08	А	
Site 3: Lowes Mount Road - Albion Street	3	6.0	0.09	А	
Site 4: Albion Street - Horace Street	<1	1.0	0.06	А	
Site 5: Albion Street - Endeavour Street	<1	0.9	0.05	А	
Site 6: North Street - Carrington Avenue	3	3.8	0.09	А	

Site 7: Oberon Street - Ross Street - unnamed road	2	3.2	0.08	А
Site 8: Duckmaloi Road - Albion Road	1	2.5	0.03	А

Note (1): The level of service is based on the worst movement of the intersection for unsignalised intersections, for details refer to Appendix D

Table 3-3: Existing conditions - intersection analysis results, PM peak hour

Intersection	Existing conditions				
	Queue length (m)	Average delay (s)	Degree of saturation	Level of service ⁽¹⁾	
Site 1: Abercrombie Road - Rupert Street	1.2	3.8	0.05	А	
Site 2: O'Connell Road - Albion Street	3.0	5.0	0.08	А	
Site 3: Lowes Mount Road - Albion Street	4.2	6.2	0.11	А	
Site 4: Albion Street - Horace Street	0.7	1.0	0.07	А	
Site 5: Albion Street - Endeavour Street	0.7	1.1	0.07	А	
Site 6: North Street - Carrington Avenue	3.0	4.1	0.10	А	
Site 7: Oberon Street - Ross Street - unnamed road	4.0	3.2	0.15	А	
Site 8: Duckmaloi Road - Albion Road	0.9	2.5	0.02	А	

Note (1): The level of service is based on the worst movement of the intersection for unsignalised intersections, for details refer to Appendix D

4. TRAFFIC IMPACT ASSESSMENT

4.1 **Proposal overview**

Borg Construction has proposed to expand its existing MDF panel processing facility to increase the production and manufacture of particle board. It is anticipated that the future development will be fully operational by the end of 2019. Expansion works will include the construction of new buildings as well as internal modifications to existing buildings, as explained in Section 2.2

4.2 Construction phase

4.2.1 Construction traffic generation

Construction works are expected to be conducted over a 24-month period, which is to commence in January 2017. Construction works would take place between 6am and 6pm, Monday to Saturday while no works are to be undertaken on Sundays.

The traffic generation associated with equipment transportation is assumed to be conducted during site establishment and limited to off-peak periods. This component has not been considered in the construction traffic generation since vehicles would deliver equipment once and would remain on site until the completion of the proposed development works.

An estimate of the number of peak heavy vehicle movements for construction is summarised in Table 4-1. Construction traffic generation is based on typical construction activities and the anticipated levels of staffing that are expected for the construction phase of the proposed development.

Phase	Duration of peak	Vehicle movements per day (two-way trip)	Number of personnel
Site establishment and construction	24 months	240 trips per day (light vehicles)	Maximum 120 per day
		60 trips per day (heavy vehicles)	

Table 4-1: Construction traffic generation

It is assumed that construction personnel would access the site prior to the general AM and PM peak periods, namely, 6am to 7am and 3pm to 4pm, respectively. Therefore, this would not have a significant impact on the existing transport network at this time.

The existing designated heavy vehicle routes to the site would be utilised by trucks associated with the construction phase. The routes include Duckmaloi Road to Albion Street and O'Connell Road to Albion Street, which form the heavy vehicle routes from the Sydney and Bathurst regions, respectively.

4.2.2 Construction impacts

The key findings of the construction phase impact assessment are:

- The construction phase is likely to have minimal impact on the existing transport network, with the majority of the vehicle movements occurring outside of the general peak periods
- No public transport provisions are required to support the construction phase of the works
- There will be no impacts on the existing pedestrian and cyclist network during construction.

4.3 **Operational phase**

4.3.1 Operational traffic generation

At the commencement of the proposed operational phase in 2019, there will be approximately 184 light vehicles accessing the site per day. In 2029, there will be an estimated 194 light vehicles entering the site per day. These estimates are based on the current number of staff and daily vehicle movements into the site for existing operations and the proposed operations for the expanded site.

In 2019 and 2029, there will be 109 and 160 trucks entering the site per day, respectively. Currently, truck movements to and from the site are generally uniform and occur between 6am and 6pm. Hence, heavy vehicles movements are assumed to be evenly distributed over a 12 hour period during the operational phase. Based on this, it is estimated that the number of trucks entering the site in 2019 and 2029 will be 10 and 14 trucks per peak hour, respectively.

Light vehicle movements due to site staff, and, heavy vehicle movements due to materials delivery and product export are summarised in Table 4-2 and Table 4-3, respectively.

Operational year	Number of personnel	Vehicle movements per day	
		One-way trip	Two-way trip
Existing	231	146	292
2019	291	184	368
2029	306	194	388

 Table 4-2: Operational traffic generation for light vehicles

Table 4-3: Operational traffic generation for heavy vehicles

Operational year	Vehicle movements per day		Vehicle movements per peak hour		
	One-way trip	Two-way trip	One-way trip	Two-way trip	
Existing	61	122	6	12	
2019	109	218	10	20	
2029	160	320	14	28	

Figure 4-1 to Figure 4-4 illustrate an estimate of origin and destination traffic patterns for the proposed traffic generated as a result of the proposed development expansion. This estimate is based on current origin and destination data for light vehicles and heavy vehicles travelling to and from the site. The percentage split of light vehicle and heavy vehicle routes is expected to remain comparable in 2019 and 2029, and hence, has been used to evaluate the traffic impact on the road network during those years.

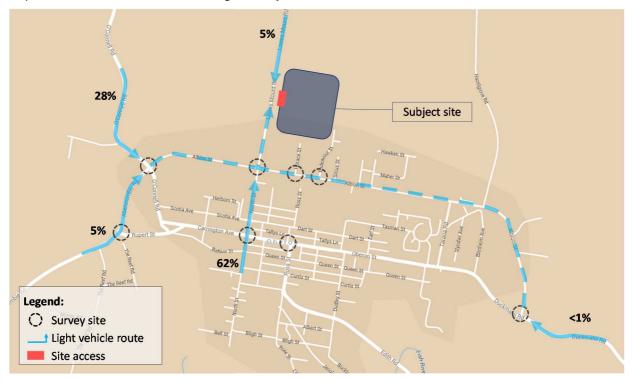


Figure 4-1: Light vehicle traffic distribution - AM peak period

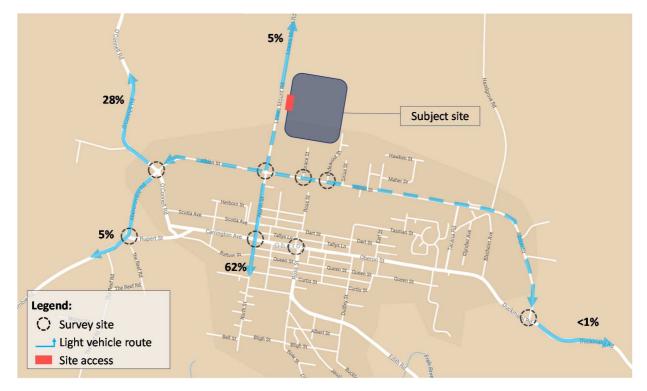


Figure 4-2: Light vehicle traffic distribution - PM peak period

Figure 4-3: Heavy vehicle traffic distribution - AM peak period

Figure 4-4: Heavy vehicle traffic distribution - PM peak period

At present, the site operates 24 hours per day, 365 days per year. No change is proposed to operating times under the development proposal. Site personnel undertake works as per the following shift times:

- Morning shift, 6:30am to 2:30pm
- Day shift, 2:30pm to 10:30pm
- Night shift, 10:30pm to 6:30am
- Full day shift, 6am to 6pm.

It has been assumed that the additional site personnel will be engaged in shift work with start and end times similar to those currently in place at the site. The forecast traffic generation attributed to additional site personnel is assumed to have no impact on the road network since arrival and departure times occur outside AM and PM peak periods. Therefore, the traffic impacts have been considered to be negligible.

It is noted that only five of the eight key intersection sites would be impacted by forecasted truck movements, as can be seen in Figure 4-3 and Figure 4-4. The intersections include Sites 2, 3, 4, 5 and 8 (refer to Section 3.5.1).

Currently, there are six trucks arriving at the site during the peak hour which generates an average arrival rate of one truck every 10 minutes. In 2029, there will be 14 trucks arriving at the site during the peak hour, generating an average arrival rate of one truck every four minutes and 17 seconds. A swipe-card entry system is to be installed at Gates 4 and 6 to accelerate heavy vehicle arrival procedures at the gatehouse. Typically, a swipe-card entry scheme would not require a truck to occupy the gatehouse for a period greater than four minutes which would remove the potential for queuing of trucks onto Lowes Mount Road. In the case that delays are experienced upon arrival, the driveway length of 110 metres prior to the gatehouses would be able to store waiting trucks clear of the roadway. Hence, this system with the proposed location of the gatehouses is considered to be appropriate for improving safety for road users within the area.

4.3.2 Site access

Existing site access arrangements will be maintained on Lowes Mount Road, that is, via Gate 4 for employees and Gate 4 and 6 for distribution trucks. Currently, log trucks access the site via Gate 5, which is to be maintained during future scenarios.

The existing geometry of access points adequately allow for 19 metre semi-trailers and 19-26 metre B-double trucks swept paths. As there are no works proposed to change the access layout and contractors' fleet, the ingress and egress swept paths are considered to be sufficient during future operational phases.

4.3.3 Operational impacts

SIDRA Intersection, version 6.1, was used to assess the operational impacts on the key intersections. A summary of the operational conditions at the key intersections during AM and PM peak periods in 2019 and 2029 are provided in Table 4-4 to Table 4-7, respectively.

The forecast vehicle turning movements at the key intersections are contained in Appendix E. These movements incorporate the additional heavy vehicle movements and existing turning movements.

Detailed results of the SIDRA intersection performance assessment for the forecast conditions in 2019 and 2029 are provided in Appendix F.

Table 4-4: Operational conditions (2019) - intersection analysis results, AM peak hour

Intersection	Forecast conditions				
	Queue length (m)	Average delay (s)	Degree of saturation	Level of service ⁽¹⁾	Current level of service
Site 1: Abercrombie Road - Rupert Street	1	3.7	0.04	А	А
Site 2: O'Connell Road - Albion Street	3	5.5	0.08	А	А
Site 3: Lowes Mount Road - Albion Street	4	6.2	0.09	А	А
Site 4: Albion Street - Horace Street	<1	0.9	0.06	А	А
Site 5: Albion Street - Endeavour Street	<1	0.8	0.06	А	А
Site 6: North Street - Carrington Avenue	3	3.8	0.09	А	А
Site 7: Oberon Street - Ross Street - unnamed road	2	3.2	0.8	А	А
Site 8: Duckmaloi Road - Albion Road	1	3.0	0.03	А	А

Note (1): The level of service is based on the worst movement of the intersection for unsignalised intersections, for details refer to Appendix F.

Intersection	Forecast conditions				
	Queue length (m)	Average delay (s)	Degree of saturation	Level of service ⁽¹⁾	Current level of service
Site 1: Abercrombie Road - Rupert Street	1	3.8	0.05	А	А
Site 2: O'Connell Road - Albion Street	3	5.1	0.08	А	А
Site 3: Lowes Mount Road - Albion Street	5	6.4	0.11	А	А

Intersection		Forecast o	onditions		
	Queue length (m)	Average delay (s)	Degree of saturation	Level of service ⁽¹⁾	Current level of service
Site 4: Albion Street - Horace Street	1	0.9	0.08	А	А
Site 5: Albion Street - Endeavour Street	2	1.0	0.08	А	А
Site 6: North Street - Carrington Avenue	3	4.1	0.10	А	А
Site 7: Oberon Street - Ross Street - unnamed road	4	3.2	0.15	А	А
Site 8: Duckmaloi Road - Albion Road	1	2.9	0.03	А	А

Note (1): The level of service is based on the worst movement of the intersection for unsignalised intersections, for details refer to Appendix F.

Table 4-6: Operational conditions (2029) - intersection analysis results, AM peak hour

Intersection		Forecast of	conditions		
	Queue length (m)	Average delay (s)	Degree of saturation	Level of service ⁽¹⁾	Current level of service
Site 1: Abercrombie Road - Rupert Street	1	3.7	0.04	А	А
Site 2: O'Connell Road - Albion Street	3	5.5	0.08	А	А
Site 3: Lowes Mount Road - Albion Street	4	6.3	0.10	А	А
Site 4: Albion Street - Horace Street	<1	0.9	0.07	А	А
Site 5: Albion Street - Endeavour Street	<1	0.8	0.06	А	А
Site 6: North Street - Carrington Avenue	3	3.8	0.09	А	А
Site 7: Oberon Street - Ross Street - unnamed road	2	3.2	0.08	А	А
Site 8: Duckmaloi Road - Albion Road	2	3.1	0.04	А	А

Note (1): The level of service is based on the worst movement of the intersection for unsignalised intersections, for details refer to Appendix F.

Intersection		Forecast c	conditions		
	Queue length (m)	Average delay (s)	Degree of saturation	Level of service ⁽¹⁾	Current level of service
Site 1: Abercrombie Road - Rupert Street	1	3.8	0.05	А	А
Site 2: O'Connell Road - Albion Street	3	5.2	0.08	А	А
Site 3: Lowes Mount Road - Albion Street	5	6.4	0.11	А	А
Site 4: Albion Street - Horace Street	<1	0.9	0.08	А	А
Site 5: Albion Street - Endeavour Street	<1	1.0	0.08	А	А
Site 6: North Street - Carrington Avenue	3	4.1	0.10	А	А
Site 7: Oberon Street - Ross Street - unnamed road	4	3.2	0.15	А	А
Site 8: Duckmaloi Road - Albion Road	3	3.7	0.08	А	А

Table 4-7: Operational conditions (2029) - intersection analysis results, PM peak hour

Note (1): The level of service is based on the worst movement of the intersection for unsignalised intersections, for details refer to Appendix F.

The key findings of the operational phase impact assessment are:

- All impacted intersections surrounding the site are operating at an acceptable level of service A during AM and PM peak periods
- All intersections experience minor increases in queue lengths and average delays, which are considered to have a negligible impact on the current road network. A comparison of data for existing conditions and 2029 operations indicates the greatest increase in queue length and average delay are 1.2 metres and 2.3 seconds, respectively, which occurs at Site 8
- Traffic generated due to additional site personnel is to occur outside of AM and PM peak periods, and therefore, is considered to have a negligible impact on the existing road network.

5. PARKING ASSESSMENT

5.1 Car parking provision

Oberon Council DCP 2001 stipulates a minimum onsite parking provision for industrial developments, specifically factories. The car parking requirement is determined by the gross floor area (GFA) of the future development, the number of factory units as part of the future development, or the number of employees per shift, whichever is greatest. The parking rates as per the DCP are as follows:

- One space per 100 m² GFA, or
- Two spaces per factory unit, or
- 0.75 spaces per employee per shift.

Automated processes, such as board moulding, laminating and finishing operations, and storage areas, for fines, sawdust and paper, will constitute a large portion of the proposed development. Hence, the number of onsite staff required would be lesser than that of a typical industrial site with manual handling processes. Therefore, determination of the required parking is considered to be more appropriately measured based on the number of employees per shift.

Based on this assumption and the number of employees as per Table 5-1, a minimum of 231 car parking spaces are required to be provided in 2029. Since it is proposed to supply 231 parking spaces, the parking provision for the proposed development is considered satisfactory.

Shift	Exis	sting	2019	2029
	Number of employees	Percentage contribution	Number of employees	Number of employees
Morning	154	66%	193	203
Day	32	14%	41	43
Night	46	20%	58	61
Total	232	100%	292	307

It is noted that the for the purpose of this analysis, employees working as part of the full day shift, that is, 6am to 6pm, have been allotted to the morning and night shifts accordingly.

Oberon Council's DCP does not supply a visitor parking provision for industrial developments. Similarly, the Roads and Maritime *Guide to Traffic Generating Developments* (version 2.2, October 2002) does not specify a visitor parking rate for factories. Consequently, SMEC has reviewed the number of visitor parking spaces as a proportional relationship to the increase in GFA.

Table 5-2: Visitor parking

Development	GFA (m²)	Required parking (based on GFA) (minimum)	Proposed parking
Existing	83,900	4	-
Proposed	100,550	5	5

Based on the existing visitor parking rate, there would be a need to provide a minimum of five visitor spaces for the future development. It is proposed to supply five visitor spaces, which is considered to be satisfactory.

Currently, visitor parking spaces are located at Gate 6, which is the designated access for heavy vehicles. As part of the future development, visitor spaces will be located at Gate 4, which is closer to site administration operations and will improve access to instructions from site personnel.

5.1.1 Accessible parking provision

Oberon Council's DCP does not stipulate a parking provision for accessible car parking. According to the *Australian Human Right Commission Guideline on the application of the Premises Standards* (version 2, 2013) and the *Draft Access Code for Buildings Section 1.3,* the proposed development is classified as a Class 5, 6, 7b, 8 and 9a (ie. factory) building and has a disabled car parking provision of one space for every 100 car parking spaces or part thereof.

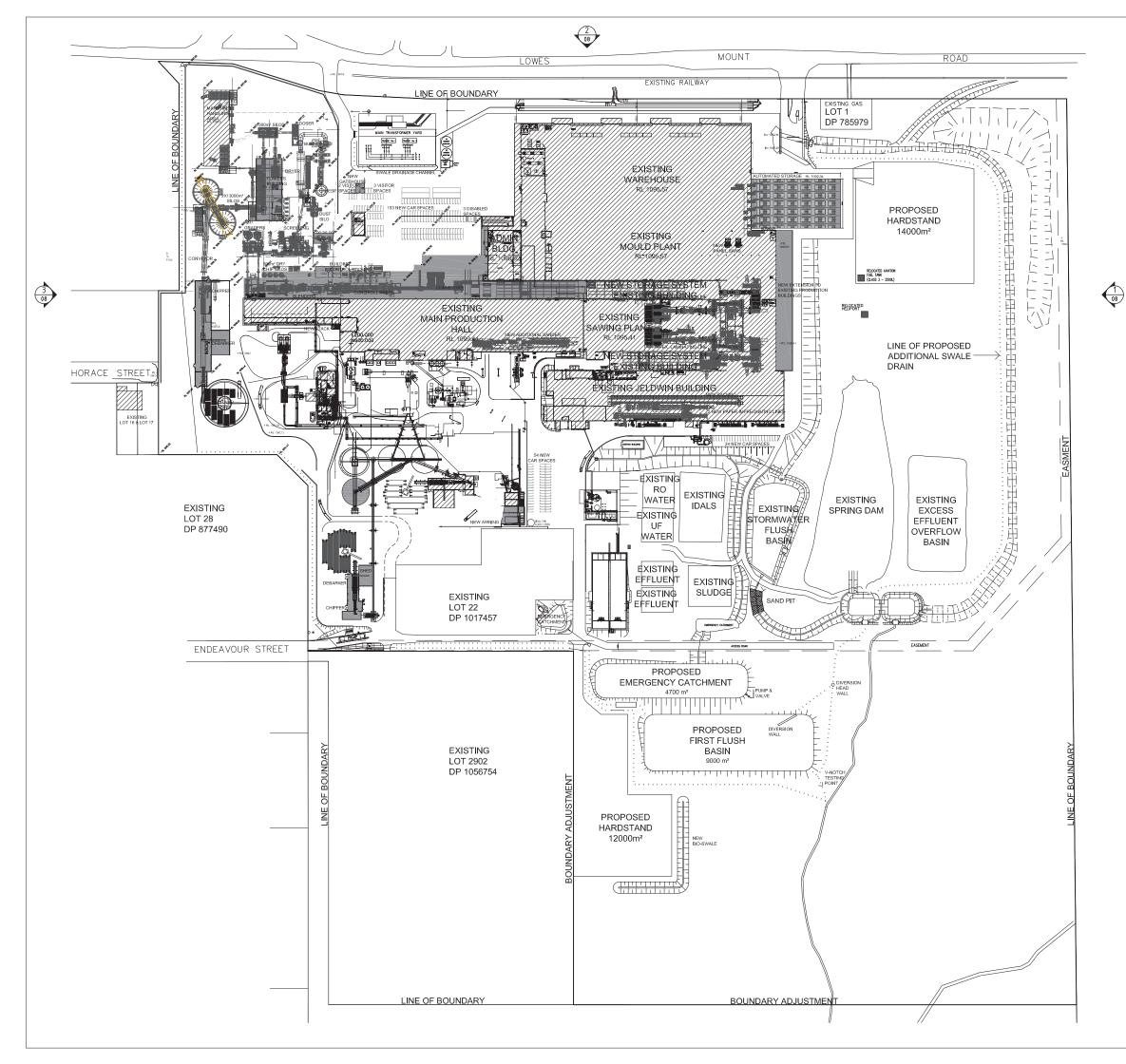
There is a total of 231 staff car parking spaces to be provided. Applying the accessible parking rate as per the Guideline and Draft Access Code, it is required to provide three accessible spaces for the proposed development.

5.2 Car parking layout

The proposed on-site car parking is to be located towards the western boundary of the site and accessible via Gate 4 on Lowes Mount Road. The car spaces are proposed as 90-degree parking spaces off the parking aisles. AS2890.1 requires car parking spaces for employee parking to be provided as Class 1A parking spaces with a minimum aisle width of 5.8 metres wide. It is noted that easier manoeuvrability of vehicles into and out of parking spaces is achievable by supplying a 6.2m wide parking aisle. At the blind aisle adjacent to the existing main high voltage substation, the aisle is extended by a minimum of 1m beyond the end-most car parking spaces, and the end-most spaces are widened by a minimum of 300mm. Council's DCP specifies car parking spaces are to be provided with minimum dimensions of 2.5 metres wide by 5.5 metres long.

Accessible car parking spaces are to be provided in accordance with AS2890.1. Spaces are to be provided with minimum of 2.4 meters wide and 5.4 meters long with an adjacent shared area.

The proposed car park layout is in accordance with the minimum requirements as set out in Oberon Council's DCP and AS2890.1. Hence, the proposed car park layout is considered satisfactory.


6. MITIGATION AND MANGAGEMENT MEASURES

The traffic impacts during the construction and operation of the development will be negligible and will be absorbed into the existing transport network. The proposed mitigation and management measures are recommended to ensure the construction traffic and road pavement assets are managed appropriately

Preliminary mitigation measures proposed for minimising impacts due to the construction development and transportation of construction materials, components and equipment are:

- Preparation of a detailed Construction Traffic Management Plan for the construction phase of the development in accordance with Roads and Maritime's *Traffic Control at Worksites Manual* (version 4.0 June 2010), which specifies:
 - + Hours of haulage, which do not impose on peak periods and school drop-off and pickup times
 - + Haulage routes, including the source of locations and their access points for the site
 - + Designated areas within the site for truck movements, parking, loading and unloading,
 - + Sequence for implementing traffic works and traffic management devices if required
 - + Safety principles for construction activities, such as speed limits around the site and procedures for specific activities
 - + Procedures for inspections and record keeping for maintaining traffic control measures
- Undertake a pavement inspection pre- and post-construction to ensure the pavement condition has not been further degraded due to construction traffic.

APPENDIX A: PROPOSED SITE LAYOUT

NOTE:

LOT BOUNDARIES FOR CONSOLIDATION ARE <u>NOT</u> SHOWN ON THIS PLAN (FOR CLARITY) - <u>REFER DA 04 CONSOLIDATION</u> PLAN FOR DETAIL

REFER TO KEY PLAN FOR REFERENCES TO DOCUMENTATION OF NEW WORKS

LEGEND:

EXISTING BUILDINGS

PROPOSED NEW BUILDINGS

NEW SWALE

NEW PIPE

UNDER REVISION ***

BØRG

CONSTRUCTION

OFFICE: 2 WELLA WAY SOMERSBY, N.S.W. 2250 AUSTRALIA Tel: 02 4340 9800 Fax: 02 4340 8293

Project

Scale

90m

0 10 20 30 40 50

Project Numbe

19

SITE PLAN

APPROX 1:1750 (@ A1)

COPYRIGHT: THIS DRAWING AND THE INFORMATION CONTAINED ARE THE PROPERTY OF THE COPYRIGHT OWNER'S BORG CONSTRUCTIONS PB, LLX, AND MAY NOT BE COPIED OR REPRODUCED WITHOUT WRITTEN PERMISSION

PROPOSED PARTICLE BOARD MANUFACTURING PLANT & ADDITIONAL WORKS.

DA 02

Stage

DA

Issue

XX

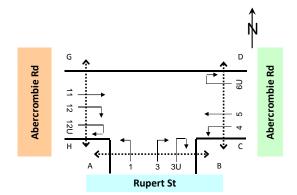
Location 124 LOWES MOUNT ROAD, OBERON NEW SOUTH WALES

 \bowtie VALVE

APPENDIX B: TRAFFIC SURVEY DATA

Suburb

: Oberon Location : 1. Abercrombie Rd / Rupert St : Tuesday, 25th August 2015 Day/Date : Fine

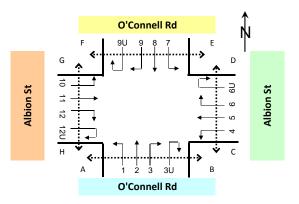

Weather Description

: Classified Intersection Count

: Hourly Summary

Approach					Rupe	ert St														ļ	Abercro	mbie Rd				
Direction		Direc (Left	tion 1 Turn)					tion 3 t Turn)			Direct (U T				Direc (Left				Direct (Thro						tion 6U Turn)	
Time Period	Cars	Trucks	Buses	Total		Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total		Cars	Trucks	Buses	Total
6:00 to 7:00	12	4	0	16		0	0	0	0	0	0	0	0	0	0	0	0	4	8	2	14		0	0	0	0
6:15 to 7:15	14	3	0	17		0	0	0	0	0	0	0	0	0	0	0	0	6	8	2	16		0	0	0	0
6:30 to 7:30	14	5	0	19		0	0	0	0	0	0	0	0	0	0	0	0	9	9	2	20		0	0	0	0
6:45 to 7:45	14	4	0	18		0	0	0	0	0	0	0	0	0	0	0	0	11	7	5	23		0	0	0	0
7:00 to 8:00	17	3	0	20		0	0	0	0	0	0	0	0	0	0	0	0	15	4	4	23		0	0	0	0
7:15 to 8:15	18	4	0	22		0	0	0	0	0	0	0	0	0	0	0	0	14	4	4	22		0	0	0	0
7:30 to 8:30	18	2	0	20		1	0	0	1	0	0	0	0	0	0	0	0	15	3	3	21		0	0	0	0
7:45 to 8:45	25	2	0	27		1	0	0	1	0	0	0	0	0	0	0	0	14	6	0	20		0	0	0	0
8:00 to 9:00	23	2	0	25		1	0	0	1	0	0	0	0	0	0	0	0	11	6	0	17		0	0	0	0
AM Totals	52	9	0	61		1	0	0	1	0	0	0	0	0	0	0	0	30	18	6	54		0	0	0	0
15:00 to 16:00	41	1	4	46		0	0	0	0	0	0	0	0	3	0	0	3	16	2	0	18		0	0	0	0
15:15 to 16:15	49	1	4	54		1	0	0	1	0	0	0	0	4	0	0	4	14	1	0	15		0	0	0	0
15:30 to 16:30	53	0	1	54		1	0	0	1	0	0	0	0	3	0	0	3	16	1	0	17		0	0	0	0
15:45 to 16:45	53	0	0	53		2	0	0	2	0	0	0	0	1	0	0	1	16	1	0	17		0	0	0	0
16:00 to 17:00	53	0	0	53		2	0	0	2	0	0	0	0	1	0	0	1	23	1	0	24		0	0	0	0
16:15 to 17:15	50	0	0	50		1	0	0	1	0	0	0	0	0	0	0	0	22	1	0	23		0	0	0	0
16:30 to 17:30	43	0	0	43		1	0	0	1	0	0	0	0	0	0	0	0	22	2	0	24		0	0	0	0
16:45 to 17:45	41	0	0	41		0	0	0	0	0	0	0	0	0	0	0	0	18	2	0	20		0	0	0	0
17:00 to 18:00	37	0	0	37		0	0	0	0	0	0	0	0	0	0	0	0	13	2	0	15		0	0	0	0
PM Totals	131	1	4	136		2	0	0	2	0	0	0	0	4	0	0	4	52	5	0	57		0	0	0	0

Approach			Aber	crombie	Rd										Crossing			
Direction		irection (Through				Direction 12 Right Turn)			Direction 12 (U Turn)	U					edestrians			
Time Period	Cars	rucks	otal	Cars		rucks Suses	otal	Cars	lrucks 3uses	Total	А	В	с	D		G	н	Total
6:00 to 7:00		8	21	6		0 0	6	0	0 0			0	0	0		0	0	0
6:15 to 7:15	12	5) 17	9		0 0	9	0	0 0	0	0	0	0	0	-	0	0	0
6:30 to 7:30	10	5) 15	13		1 0	14	0	0 0	0	0	0	0	0		0	0	0
6:45 to 7:45	9	3) 12	19		1 0	20	0	0 0	0	0	0	0	0		0	0	0
7:00 to 8:00	8	5) 13	26		2 0	28	0	0 0	0	0	0	0	0		0	0	0
7:15 to 8:15	10	8	18	30		2 0	32	0	0 0	0	0	0	0	0		0	0	0
7:30 to 8:30	9	8) 17	35		2 0	37	0	0 0	0	0	0	0	0		0	0	0
7:45 to 8:45	11	.0	21	37		2 4	43	0	0 0	0	0	0	0	0		0	0	0
8:00 to 9:00	14	7	1 22	42		2 4	48	0	0 0	0	0	0	0	0		0	0	0
AM Totals	35	20	1 56	74		4 4	82	0	0 0	0	0	0	0	0		0	0	0
15:00 to 16:00	9	6) 15	35		2 0	37	0	0 0	0	0	0	0	0	Ι Γ	0	0	0
15:15 to 16:15	9	7	16	35		2 0	37	0	0 0	0	0	0	0	0		0	0	0
15:30 to 16:30	12	7	3 22	38		3 0	41	0	0 0	0	0	0	0	0		0	0	0
15:45 to 16:45	10	9	4 23	36		2 0	38	0	0 0	0	0	0	0	0		0	0	0
16:00 to 17:00	10	8	4 22	38		3 0	41	0	0 0	0	0	0	0	0		0	0	0
16:15 to 17:15	12	7	5 2 4	37		4 0	41	0	0 0	0	0	0	0	0		0	0	0
16:30 to 17:30	10	6	2 18	33		3 0	36	0	0 0	0	0	0	0	0		0	0	0
16:45 to 17:45	14	3	1 18	31		3 0	34	0	0 0	0	0	0	0	0		0	0	0
17:00 to 18:00	17	3	1 21	21		2 0	23	0	0 0	0	0	0	0	0		0	0	0
PM Totals	36	.7	5 58	94		7 0	101	0	0 0	0	0	0	0	0		0	0	0


Weather Description

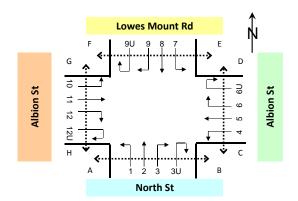
: Classified Intersection Count

: Hourly Summary

Approach								O'Con	nell Rd															Albi	on St							
Direction		Direct (Left		-		Direc (Thre	tion 2 ough)	-		Direc (Right		-		Direct (U T				Direc (Left	tion 4 Turn)	-		Direc (Thro		-			tion 6 : Turn)	-		Direct (U T	ion 6U 'urn)	
Time Period	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total
6:00 to 7:00	0	0	0	0	26	3	0	29	1	0	0	1	0	0	0	0	0	0	0	0	0	6	2	8	8	4	0	12	0	2	0	2
6:15 to 7:15	0	0	0	0	24	3	0	27	1	0	0	1	0	0	0	0	0	0	0	0	1	4	2	7	11	5	0	16	0	1	0	1
6:30 to 7:30	0	0	0	0	25	2	0	27	2	0	0	2	0	0	0	0	0	0	0	0	3	7	4	14	12	8	0	20	0	1	0	1
6:45 to 7:45	1	0	0	1	29	1	0	30	2	0	0	2	0	0	0	0	1	0	0	1	4	6	4	14	13	5	1	19	0	1	0	1
7:00 to 8:00	1	0	0	1	29	1	2	32	2	0	0	2	0	0	0	0	1	0	0	1	6	6	4	16	17	6	1	24	0	2	0	2
7:15 to 8:15	2	0	0	2	38	1	2	41	3	0	0	3	0	0	0	0	4	0	0	4	6	6	4	16	22	8	1	31	0	2	0	2
7:30 to 8:30	2	0	0	2	47	1	2	50	3	0	0	3	0	0	0	0	4	0	0	4	4	3	1	8	23	8	1	32	0	2	0	2
7:45 to 8:45	1	0	0	1	52	0	2	54	5	0	0	5	0	0	0	0	4	0	0	4	5	7	1	13	26	10	0	36	0	2	0	2
8:00 to 9:00	1	0	0	1	54	2	0	56	4	0	0	4	0	0	0	0	5	0	0	5	6	6	0	12	24	9	0	33	0	0	0	0
AM Totals	2	0	0	2	109	6	2	117	7	0	0	7	0	0	0	0	6	0	0	6	12	18	6	36	49	19	1	69	0	4	0	4
15:00 to 16:00	0	0	0	0	70	1	0	71	2	0	0	2	0	0	0	0	0	0	0	0	7	2	0	9	17	5	0	22	0	1	0	1
15:15 to 16:15	0	0	0	0	70	1	0	71	1	0	0	1	0	0	0	0	1	0	0	1	8	2	0	10	28	3	0	31	1	0	0	1
15:30 to 16:30	2	0	0	2	65	3	1	69	1	0	0	1	0	0	0	0	3	0	0	3	10	1	0	11	39	3	1	43	1	0	0	1
15:45 to 16:45	2	0	0	2	53	4	2	59	1	0	0	1	0	0	0	0	3	0	0	3	13	0	0	13	50	4	2	56	1	0	0	1
16:00 to 17:00	2	0	0	2	44	5	2	51	1	0	0	1	0	0	0	0	4	0	0	4	13	0	0	13	62	4	2	68	1	0	0	1
16:15 to 17:15	4	0	0	4	40	5	2	47	0	0	0	0	1	0	0	1	5	0	0	5	12	1	0	13	62	4	2	68	0	0	0	0
16:30 to 17:30	3	0	0	3	43	3	3	49	0	1	0	1	1	0	0	1	6	0	0	6	12	1	0	13	54	7	1	62	0	0	0	0
16:45 to 17:45	4	0	0	4	44	3	3	50	0	1	0	1	1	0	0	1	7	0	0	7	9	1	0	10	43	9	0	52	0	0	0	0
17:00 to 18:00	5	0	0	5	40	3	3	46	1	1	0	2	1	0	0	1	7	0	0	7	9	1	0	10	30	10	0	40	0	0	0	0
PM Totals	7	0	0	7	154	9	5	168	4	1	0	5	1	0	0	1	11	0	0	11	29	3	0	32	109	19	2	130	1	1	0	2

Approach								O'Cor	nnell Rd															Albi	on St												Crossing	,			
Direction		Direct (Left					tion 8 ough)	-			ection 9 ht Turn)	-		Direct (U T	ion 9U urn)	-		Direct (Left		-		Direct (Thre				Direct (Right		-			on 12U 'urn)						edestria				
Time Period	Cars	Trucks	Buses	Fotal	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Fotal	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	А	в	с	D	E	F	G	н	Fotal
6:00 to 7:00	42	13	0	55	10	0	1	11	0	2	0	2	0	0	0	0	5	0	0	5	10	2	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:15 to 7:15	38	11	0	49	14	0	0	14	0	2	0	2	0	0	0	0	5	0	0	5	9	2	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30 to 7:30	40	6	0	46	19	0	1	20	1	2	0	3	0	0	0	0	6	0	0	6	10	3	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 to 7:45	37	6	0	43	24	0	1	25	1	3	0	4	0	0	0	0	6	0	0	6	10	4	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 to 8:00	40	9	0	49	25	0	1	26	1	3	0	4	0	0	0	0	6	0	0	6	10	4	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 to 8:15	41	9	0	50	29	2	1	32	4	2	0	6	0	0	0	0	5	0	0	5	8	4	0	12	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 to 8:30	38	8	0	46	42	3	0	45	4	1	0	5	0	0	0	0	4	0	0	4	4	6	0	10	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 to 8:45	36	11	0	47	46	3	1	50	6	0	0	6	0	0	0	0	5	0	0	5	4	5	0	9	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 to 9:00	26	8	0	34	50	3	1	54	6	0	0	6	0	0	0	0	4	0	0	4	5	6	0	11	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
AM Totals	108	30	0	138	85	3	3	91	7	5	0	12	0	0	0	0	15	0	0	15	25	12	0	37	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00 to 16:00	10	5	1	16	41	2	0	43	1	1	0	2	0	0	0	0	2	1	0	3	2	3	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15 to 16:15	13	6	1	20	47	2	0	49	3	1	0	4	0	0	0	0	3	1	0	4	5	3	0	8	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30 to 16:30	18	7	2	27	56	2	2	60	4	2	0	6	0	0	0	0	4	1	0	5	7	4	3	14	3	0	0	3	1	0	0	1	0	0	0	0	0	0	0	0	0
15:45 to 16:45	20	9	2	31	60	2	4	66	6	2	0	8	0	0	0	0	4	1	0	5	9	8	4	21	3	0	0	3	1	0	0	1	0	0	0	0	0	0	0	0	0
16:00 to 17:00	19	7	1	27	56	2	4	62	7	1	0	8	0	0	0	0	6	1	0	7	11	7	4	22	4	0	0	4	1	0	0	1	0	0	0	0	0	0	0	0	0
16:15 to 17:15	17	5	1	23	51	1	4	56	5	1	0	6	0	0	0	0	5	0	0	5	8	6	4	18	3	0	0	3	1	0	0	1	0	0	0	0	0	0	0	0	0
16:30 to 17:30	26	4	0	30	51	1	2	54	7	0	0	7	0	0	0	0	5	0	0	5	8	4	2	14	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45 to 17:45	35	3	0	38	38	1	1	40	7	0	0	7	0	0	0	0	6	0	0	6	7	0	1	8	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00 to 18:00	43	2	0	45	44	0	1	45	7	0	0	7	0	0	0	0	5	0	0	5	8	0	1	9	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Totals	72	14	2	88	141	4	5	150	15	2	0	17	0	0	0	0	13	2	0	15	21	10	5	36	5	0	0	5	1	0	0	1	0	0	0	0	0	0	0	0	0

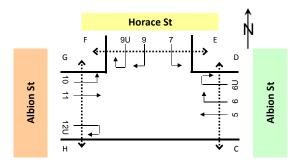
Location: 3. Lowes Mount Rd / Albion StDay/Date: Tuesday, 25th August 2015Weather: Fine


Weather Description

: Classified Intersection Count

: Hourly Summary

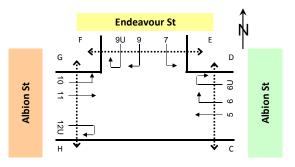
Approach								Nor	th St															Albi	on St							
Direction		Direct (Left				Direc (Thro	tion 2 ough)			Direc (Right				Direct (U T	ion 3U urn)			Direc (Left				Direc (Thro				Direc (Right	tion 6 t Turn)			Direct (U T	ion 6U urn)	
Time Period	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total
6:00 to 7:00	6	1	0	7	29	0	1	30	23	1	0	24	1	0	0	1	19	1	1	21	5	11	2	18	8	0	0	8	0	0	0	0
6:15 to 7:15	4	1	0	5	25	0	0	25	24	2	1	27	1	0	0	1	27	4	1	32	9	10	2	21	6	1	0	7	0	0	0	0
6:30 to 7:30	8	1	0	9	23	0	0	23	26	2	1	29	1	0	0	1	34	9	2	45	10	14	4	28	7	1	1	9	0	1	0	1
6:45 to 7:45	11	1	0	12	27	0	0	27	30	2	1	33	1	0	0	1	38	11	2	51	15	17	6	38	5	1	1	7	0	1	0	1
7:00 to 8:00	12	1	0	13	25	0	0	25	24	3	1	28	0	0	0	0	33	11	2	46	19	14	5	38	2	3	1	6	0	1	0	1
7:15 to 8:15	16	1	0	17	31	0	0	31	28	3	0	31	0	0	0	0	31	7	2	40	24	15	5	44	5	4	1	10	0	1	0	1
7:30 to 8:30	12	1	0	13	25	0	0	25	32	4	0	36	0	0	0	0	31	4	0	35	26	16	2	44	3	5	0	8	0	0	0	0
7:45 to 8:45	20	1	0	21	25	0	0	25	28	5	0	33	0	0	0	0	36	3	0	39	23	16	0	39	5	7	0	12	0	0	0	0
8:00 to 9:00	21	1	0	22	26	0	4	30	34	6	6	46	0	0	0	0	42	3	0	45	27	12	0	39	6	6	0	12	0	0	0	0
AM Totals	39	3	0	42	80	0	5	85	81	10	7	98	1	0	0	1	94	15	3	112	51	37	7	95	16	9	1	26	0	1	0	1
15:00 to 16:00	22	1	0	23	33	5	1	39	48	6	1	55	1	0	0	1	62	4	9	75	16	8	0	24	5	7	0	12	1	0	0	1
15:15 to 16:15	26	1	0	27	39	5	1	45	54	4	1	59	1	0	0	1	57	5	1	63	17	9	0	26	6	7	0	13	1	0	0	1
15:30 to 16:30	29	1	0	30	37	4	1	42	44	4	0	48	1	0	0	1	55	5	0	60	22	9	1	32	4	5	0	9	2	0	0	2
15:45 to 16:45	28	0	0	28	42	1	0	43	33	4	1	38	1	0	0	1	49	4	0	53	24	13	2	39	6	5	0	11	1	0	0	1
16:00 to 17:00	32	1	0	33	40	1	0	41	31	2	1	34	1	0	0	1	50	4	0	54	26	12	2	40	8	4	0	12	1	1	0	2
16:15 to 17:15	29	1	0	30	40	1	0	41	31	3	1	35	0	0	0	0	52	1	0	53	23	9	2	34	8	3	0	11	1	1	0	2
16:30 to 17:30	25	1	0	26	41	1	0	42	34	4	2	40	0	0	0	0	56	2	0	58	20	11	1	32	9	4	0	13	0	1	0	1
16:45 to 17:45	24	1	0	25	38	0	0	38	33	3	1	37	0	0	0	0	60	1	1	62	17	9	0	26	10	1	0	11	0	1	0	1
17:00 to 18:00	18	0	0	18	43	1	0	44	25	2	1	28	0	0	0	0	47	1	1	49	14	9	0	23	14	2	0	16	0	0	0	0
PM Totals	72	2	0	74	116	7	1	124	104	10	3	117	2	0	0	2	159	9	10	178	56	29	2	87	27	13	0	40	2	1	0	3


Approach							I	Lowes N	/lount R	d														Albi	on St												Crossing	,			
Direction		Direc (Left				Direc (Thro	tion 8 ough)			Direc (Right	tion 9 t Turn)				tion 9U Turn)				tion 10 Turn)			Direct (Thro				Direct (Right				Directi (U T							edestriar				
Time Period	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	А	в	с	D	E	F	G	н	Total
6:00 to 7:00	3	1	1	5	16	0	0	16	6	1	0	7	0	0	0	0	25	3	0	28	11	9	0	20	4	1	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
6:15 to 7:15	2	1	0	3	14	1	0	15	8	1	0	9	0	0	0	0	23	3	0	26	15	12	0	27	2	1	0	3	0	0	0	0	0	0	1	0	0	0	0	0	1
6:30 to 7:30	2	1	0	3	14	1	0	15	6	2	0	8	0	0	0	0	20	0	0	20	13	13	0	26	4	2	0	6	0	0	0	0	0	0	1	0	0	0	0	0	1
6:45 to 7:45	2	2	0	4	14	2	0	16	4	1	0	5	0	0	0	0	17	0	0	17	13	12	0	25	5	1	0	6	0	0	0	0	0	0	1	0	0	0	0	0	1
7:00 to 8:00	3	2	0	5	10	2	0	12	5	2	0	7	0	0	0	0	16	1	0	17	15	16	0	31	8	1	0	9	0	0	0	0	0	0	1	0	0	0	0	0	1
7:15 to 8:15	6	4	0	10	14	1	0	15	5	3	0	8	0	0	0	0	15	1	0	16	13	13	0	26	12	3	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 to 8:30	8	6	0	14	17	1	0	18	8	2	0	10	0	0	0	0	10	1	0	11	14	11	0	25	14	2	0	16	0	0	0	0	0	0	0	0	0	1	0	0	1
7:45 to 8:45	8	6	0	14	22	0	1	23	9	2	0	11	0	0	0	0	9	1	0	10	18	13	0	31	16	2	0	18	0	0	0	0	0	0	0	0	0	1	0	0	1
8:00 to 9:00	8	7	4	19	29	0	1	30	9	1	0	10	0	0	0	0	5	0	0	5	17	11	0	28	20	3	0	23	0	0	0	0	0	0	0	0	0	1	0	0	1
AM Totals	14	10	5	29	55	2	1	58	20	4	0	24	0	0	0	0	46	4	0	50	43	36	0	79	32	5	0	37	0	0	0	0	0	0	1	0	0	1	0	0	2
15:00 to 16:00	6	10	0	16	49	1	0	50	11	6	0	17	0	0	0	0	9	1	0	10	29	22	1	52	35	3	0	38	1	0	0	1	0	0	0	2	1	0	0	0	3
15:15 to 16:15	9	8	0	17	52	0	0	52	14	4	0	18	0	0	0	0	8	3	0	11	31	23	1	55	36	1	0	37	1	0	0	1	0	0	0	6	1	0	0	0	7
15:30 to 16:30	9	7	0	16	54	1	0	55	21	1	0	22	0	0	0	0	7	3	0	10	34	18	5	57	39	1	0	40	1	0	0	1	0	0	2	6	1	0	0	0	9
15:45 to 16:45	13	5	0	18	54	2	0	56	24	1	0	25	0	0	0	0	6	5	0	11	26	16	6	48	19	1	0	20	1	0	0	1	0	0	2	6	0	0	0	0	8
16:00 to 17:00	18	5	1	24	52	2	0	54	29	0	0	29	0	0	0	0	4	7	0	11	23	12	5	40	17	0	0	17	0	0	0	0	0	0	2	4	0	0	0	0	6
16:15 to 17:15	17	5	1	23	35	2	0	37	29	0	0	29	0	0	0	0	3	6	0	9	17	10	5	32	17	1	0	18	0	0	0	0	1	0	2	0	0	0	1	0	4
16:30 to 17:30	15	5	1	21	32	2	0	34	24	1	0	25	0	0	0	0	7	5	0	12	17	10	2	29	16	1	0	17	0	0	0	0	1	0	0	0	0	0	1	0	2
16:45 to 17:45	13	5	1	19	30	2	0	32	20	1	0	21	0	0	0	0	11	3	0	14	22	5	1	28	22	1	0	23	0	0	0	0	1	0	0	0	0	0	1	0	2
17:00 to 18:00	9	1	0	10	43	4	0	47	15	1	0	16	0	0	0	0	17	1	0	18	28	4	1	33	24	1	0	25	0	0	0	0	1	0	0	0	0	0	1	0	2
PM Totals	33	16	1	50	144	7	0	151	55	7	0	62	0	0	0	0	30	9	0	39	80	38	7	125	76	4	0	80	1	0	0	1	1	0	2	6	1	0	1	0	11

Suburb	: Oberon
Location	: 4. Albion St / Horace St
Day/Date	: Tuesday, 25th August 2015
Weather	: Fine
Description	: Classified Intersection Count
	: Hourly Summary

Approach	Albion St													
Direction		Direction 5 (Through)						tion 6 t Turn)		Direction 6U (U Turn)				
				v. 8.17	_				_					
Time Period		Cars	Truck	Buse	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	
6:00 to 7:00		35	12	0	47	0	0	0	0	0	0	0	0	
6:15 to 7:15		41	13	0	54	0	0	0	0	0	0	0	0	
6:30 to 7:30		48	20	0	68	1	0	0	1	0	0	0	0	
6:45 to 7:45		52	22	0	74	1	0	0	1	0	0	0	0	
7:00 to 8:00		44	19	0	63	2	0	0	2	0	0	0	0	
7:15 to 8:15		49	22	0	71	5	0	0	5	0	0	0	0	
7:30 to 8:30		50	23	0	73	4	0	0	4	0	0	0	0	
7:45 to 8:45		51	23	0	74	7	0	0	7	0	0	0	0	
8:00 to 9:00		58	24	0	82	8	0	0	8	0	0	0	0	
AM Totals		137	55	0	192	10	0	0	10	0	0	0	0	
15:00 to 16:00		67	21	0	88	10	1	0	11	0	0	0	0	
15:15 to 16:15		68	21	0	89	10	1	0	11	1	0	0	1	
15:30 to 16:30		70	20	2	92	11	2	0	13	1	0	0	1	
15:45 to 16:45		59	18	3	80	10	1	0	11	2	0	0	2	
16:00 to 17:00		64	17	3	84	4	1	0	5	2	0	0	2	
16:15 to 17:15		66	15	3	84	3	1	0	4	1	0	0	1	
16:30 to 17:30		69	17	1	87	2	0	0	2	1	0	0	1	
16:45 to 17:45		66	15	0	81	1	0	0	1	0	0	0	0	
17:00 to 18:00		62	14	0	76	0	0	0	0	0	0	0	0	
PM Totals		193	52	3	248	14	2	0	16	2	0	0	2	

Approach					Hora	ice St															Albi	Di	Albi
Direction			tion 7 Turn)				Direc (Right	tion 9 Turn)				ion 9U Turn)			Direct (Left	ion 10 Turn)			Direct (Thro				
Time Period	Cars	Trucks	Buses	Total		Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total		Total
6:00 to 7:00	0	0	0	0		1	0	0	1	0	0	0	0	1	0	0	1	30	13	1	44		44
6:15 to 7:15	0	0	0	0		1	0	0	1	0	0	0	0	1	1	0	2	33	16	1	50		50
6:30 to 7:30	0	1	0	1		0	0	0	0	0	0	0	0	1	1	0	2	30	15	1	46		46
6:45 to 7:45	0	1	0	1		1	0	0	1	0	0	0	0	5	1	0	6	26	14	2	42		42
7:00 to 8:00	0	1	0	1		1	0	0	1	0	0	0	0	7	2	0	9	26	19	2	47		47
7:15 to 8:15	0	1	0	1		1	0	0	1	0	0	0	0	9	1	0	10	28	18	1	47	_	47
7:30 to 8:30	1	0	0	1		4	0	0	4	0	0	0	0	11	1	0	12	35	22	1	58	_	58
7:45 to 8:45	3	0	0	3		6	0	0	6	0	0	0	0	11	1	0	12	39	25	0	64		64
8:00 to 9:00	3	0	0	3		9	0	0	9	0	0	0	0	11	0	0	11	41	23	0	64		64
AM Totals	3	1	0	4		11	0	0	11	0	0	0	0	19	2	0	21	97	55	3	155		155
15:00 to 16:00	6	0	0	6		12	2	0	14	0	0	0	0	4	2	0	6	69	25	1	95		95
15:15 to 16:15	7	0	0	7		10	2	0	12	0	0	0	0	5	1	0	6	84	25	1	110		110
15:30 to 16:30	9	0	0	9		10	3	0	13	0	0	0	0	6	0	0	6	77	18	0	95		95
15:45 to 16:45	6	0	0	6		10	3	0	13	0	0	0	0	5	0	0	5	69	18	0	87		87
16:00 to 17:00	6	0	0	6		13	2	0	15	0	0	0	0	6	0	0	6	66	20	0	86		86
16:15 to 17:15	8	0	0	8		10	1	0	11	0	0	0	0	6	1	0	7	59	20	0	79		79
16:30 to 17:30	7	0	0	7		8	0	0	8	0	0	0	0	5	1	0	6	61	20	0	81		81
16:45 to 17:45	7	0	0	7		9	0	0	9	0	0	0	0	4	1	0	5	61	14	0	75		75
17:00 to 18:00	5	0	0	5		7	0	0	7	0	0	0	0	3	1	0	4	57	7	0	64		64
PM Totals	17	0	0	17		32	4	0	36	0	0	0	0	13	3	0	16	192	52	1	245		245



		Crossing edestria				
С	D	E	F	G	н	Total
0	1	0	0	0	0	1
0	1	0	0	0	0	1
0	1	0	0	0	0	1
0	1	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	0	1	1
0	1	0	0	0	1	2
0	1	0	0	0	0	1
0	1	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	0	0	0	0	1

Suburb	: Oberon
Location	: 5. Albion St / Endeavour St
Day/Date	: Tuesday, 25th August 2015
Weather	: Fine
Description	: Classified Intersection Count
	: Hourly Summary

Approach	Albion St													
Direction			Direc (Thro					tion 6 : Turn)		Direction 6U (U Turn)				
				s	_				_			-	_	
Time Period		Cars	Truck	Buse	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	
6:00 to 7:00		34	7	0	41	0	2	0	2	0	0	0	0	
6:15 to 7:15		40	9	0	49	2	2	0	4	0	0	0	0	
6:30 to 7:30		47	12	0	59	3	1	0	4	0	0	0	0	
6:45 to 7:45		49	13	0	62	3	0	0	3	0	0	0	0	
7:00 to 8:00		46	12	0	58	3	0	0	3	0	0	0	0	
7:15 to 8:15		53	13	0	66	1	0	0	1	0	0	0	0	
7:30 to 8:30		54	15	0	69	0	0	0	0	0	0	0	0	
7:45 to 8:45		59	18	0	77	0	1	0	1	0	0	0	0	
8:00 to 9:00		60	18	0	78	0	1	0	1	0	0	0	0	
AM Totals		140	37	0	177	3	3	0	6	0	0	0	0	
15:00 to 16:00		70	17	0	87	1	0	0	1	0	0	0	0	
15:15 to 16:15		72	16	0	88	1	0	0	1	0	0	0	0	
15:30 to 16:30		71	18	2	91	2	0	0	2	0	0	0	0	
15:45 to 16:45		60	13	3	76	2	0	0	2	0	0	0	0	
16:00 to 17:00		63	10	3	76	2	1	0	3	0	0	0	0	
16:15 to 17:15		64	13	3	80	2	1	0	3	0	0	0	0	
16:30 to 17:30		68	12	1	81	0	1	0	1	0	0	0	0	
16:45 to 17:45		66	13	0	79	0	1	0	1	0	0	0	0	
17:00 to 18:00		59	12	0	71	0	0	0	0	0	0	0	0	
PM Totals		192	39	3	234	3	1	0	4	0	0	0	0	

Approach					Endea	vour St															Alb	b
Direction			tion 7 Turn)				Direc (Right	tion 9 : Turn)			Direct (U T				Direct (Left	ion 10 Turn)			Direct (Thro			
Time Period	Cars	Trucks	Buses	Total		Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	
6:00 to 7:00	0	3	0	3		0	6	0	6	0	0	0	0	1	5	0	6	28	8	1	37	_
6:15 to 7:15	0	2	0	2		0	5	0	5	0	0	0	0	1	7	0	8	31	8	1	40	
6:30 to 7:30	0	1	0	1		1	8	0	9	0	0	0	0	1	6	0	7	28	9	1	38	
6:45 to 7:45	0	0	0	0		2	8	0	10	0	0	0	0	2	7	0	9	22	8	2	32	
7:00 to 8:00	0	0	0	0		2	5	0	7	0	0	0	0	5	9	0	14	21	10	2	33	
7:15 to 8:15	0	1	0	1		2	6	0	8	0	0	0	0	5	7	0	12	24	13	1	38	
7:30 to 8:30	1	1	0	2		1	6	0	7	0	0	0	0	5	7	0	12	32	15	1	48	
7:45 to 8:45	1	1	0	2		0	4	0	4	0	0	0	0	5	8	0	13	37	15	0	52	
8:00 to 9:00	1	1	0	2		1	5	0	6	0	0	0	0	3	8	0	11	41	14	0	55	
AM Totals	1	4	0	5		3	16	0	19	0	0	0	0	9	22	0	31	90	32	3	125	i
15:00 to 16:00	0	2	0	2		8	6	0	14	0	0	0	0	5	8	0	13	74	17	1	92	
15:15 to 16:15	3	3	0	6		8	6	0	14	0	0	0	0	6	10	0	16	84	15	1	100	
15:30 to 16:30	3	2	0	5		9	4	0	13	0	0	0	0	5	6	0	11	79	12	0	91	
15:45 to 16:45	3	2	0	5		8	7	0	15	0	0	0	0	4	5	0	9	69	14	0	83	
16:00 to 17:00	3	2	0	5		6	6	0	12	0	0	0	0	4	4	0	8	66	15	0	81	
16:15 to 17:15	1	0	0	1		5	5	0	10	0	0	0	0	5	2	0	7	62	16	0	78	
16:30 to 17:30	1	0	0	1		6	5	0	11	0	0	0	0	5	2	0	7	63	17	0	80	
16:45 to 17:45	2	0	0	2		3	2	0	5	0	0	0	0	4	2	0	6	68	10	0	78	
17:00 to 18:00	2	0	0	2		3	2	0	5	0	0	0	0	2	2	0	4	57	5	0	62	
PM Totals	5	4	0	9		17	14	0	31	0	0	0	0	11	14	0	25	197	37	1	235	;

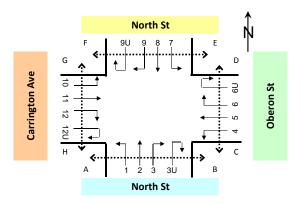
		Crossing edestria				
с	D	E	F	G	н	Total
0	1	1	1	1	1	5
0	1	1	1	1	2	6
0	1	1	1	1	2	6
0	0	1	0	1	2	4
0	0	0	0	0	1	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	1	1	1	2	6
0	0	0	1	1	1	3
0	0	0	1	1	1	3
0	0	0	1	0	1	2
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	1	2
0	0	0	0	1	1	2
0	0	0	0	1	1	2
0	0	0	1	2	2	5

Suburb : Oberon

Location : 6. North St / Oberon St / Carrington Ave

Day/Date : Tuesday, 25th August 2015

: Fine


Weather Description

: Classified Intersection Count

: Hourly Summary

Approach								Nor	th St															Ober	on St							
Direction		Direct (Left				Direc (Thro				Direc (Right		-		Direct (U T	ion 3U Turn)	-		Direc (Left		-		Direc (Thro		-		Direc (Right	tion 6 Turn)	-		Direct (U T		
Time Period	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total
6:00 to 7:00	2	0	0	2	6	0	0	6	6	0	0	6	0	0	0	0	7	0	0	7	24	0	0	24	46	0	0	46	0	0	0	0
6:15 to 7:15	2	0	0	2	6	0	0	6	8	0	0	8	0	0	0	0	7	0	0	7	38	1	0	39	46	0	1	47	0	0	0	0
6:30 to 7:30	3	0	0	3	8	0	0	8	8	0	0	8	0	0	0	0	7	0	0	7	43	2	0	45	48	0	1	49	0	0	0	0
6:45 to 7:45	6	0	0	6	9	0	0	9	6	0	0	6	0	0	0	0	3	0	0	3	42	2	0	44	44	0	1	45	0	0	0	0
7:00 to 8:00	7	0	0	7	8	1	0	9	10	0	0	10	0	0	0	0	5	2	0	7	47	2	2	51	40	3	1	44	0	0	0	0
7:15 to 8:15	10	0	0	10	11	1	0	12	11	0	0	11	0	0	0	0	12	2	0	14	47	1	2	50	45	5	0	50	1	0	0	1
7:30 to 8:30	12	1	0	13	9	2	0	11	18	0	0	18	0	0	0	0	16	2	0	18	49	1	2	52	46	5	0	51	1	0	0	1
7:45 to 8:45	11	1	0	12	13	2	0	15	26	0	0	26	0	0	0	0	23	2	1	26	48	5	2	55	48	5	0	53	1	0	0	1
8:00 to 9:00	11	1	0	12	17	1	0	18	28	0	0	28	0	0	0	0	31	0	2	33	61	5	0	66	46	2	2	50	1	0	0	1
AM Totals	20	1	0	21	31	2	0	33	44	0	0	44	0	0	0	0	43	2	2	47	132	7	2	141	132	5	3	140	1	0	0	1
15:00 to 16:00	8	0	0	8	12	0	0	12	30	0	0	30	0	0	0	0	26	0	0	26	66	0	0	66	47	0	0	47	0	0	0	0
15:15 to 16:15	8	0	0	8	11	0	0	11	30	0	0	30	0	0	0	0	33	0	0	33	70	0	0	70	51	0	0	51	0	0	0	0
15:30 to 16:30	8	0	0	8	12	0	0	12	32	0	0	32	0	0	0	0	43	0	0	43	75	0	1	76	59	0	0	59	0	0	0	0
15:45 to 16:45	5	5	0	10	16	0	0	16	29	0	0	29	0	0	0	0	39	0	0	39	75	0	1	76	55	1	2	58	0	0	0	0
16:00 to 17:00	10	5	0	15	17	0	0	17	23	0	0	23	0	0	0	0	34	0	0	34	73	0	1	74	56	1	2	59	0	0	0	0
16:15 to 17:15	8	5	0	13	20	0	0	20	20	0	0	20	0	0	0	0	29	0	0	29	76	0	1	77	58	1	2	61	0	0	0	0
16:30 to 17:30	8	5	0	13	19	0	0	19	13	0	0	13	0	0	0	0	19	0	0	19	74	0	0	74	55	1	2	58	0	0	0	0
16:45 to 17:45	9	0	0	9	17	0	0	17	15	0	0	15	0	0	0	0	16	0	0	16	70	0	1	71	62	0	0	62	0	0	0	0
17:00 to 18:00	3	0	0	3	18	0	0	18	15	0	0	15	0	0	0	0	16	0	0	16	76	0	1	77	56	2	0	58	0	0	0	0
PM Totals	21	5	0	26	47	0	0	47	68	0	0	68	0	0	0	0	76	0	0	76	215	0	2	217	159	3	2	164	0	0	0	0

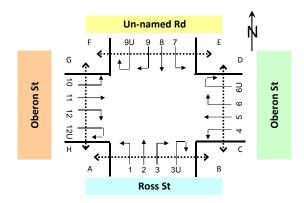
Approach								Nor	rth St															Carring	ton Ave	2											Crossing	a			
Direction			ction 7 t Turn)	-		Direc (Thro	tion 8 ough)	-			ection 9 ht Turn)	-		Direct (U 1	ion 9U Turn)	-		Direct (Left	ion 10 Turn)	-		Direct (Thre		-			tion 12 t Turn)	-			ion 12U Turn)	-		_			edestria	0			
Time Period	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	А	в	с	D	E	F	G	н	Total
6:00 to 7:00	16	0	1	17	3	1	0	4	4	1	0	5	0	0	0	0	3	0	0	3	22	0	1	23	2	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	1
6:15 to 7:15	21	0	1	22	2	1	0	3	4	2	0	6	0	0	0	0	5	0	0	5	26	1	0	27	2	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	1
6:30 to 7:30	23	3	2	28	1	0	0	1	8	2	0	10	0	0	0	0	8	0	0	8	36	2	0	38	1	0	0	1	0	0	0	0	0	2	0	0	1	0	0	0	3
6:45 to 7:45	26	3	2	31	4	0	0	4	9	1	0	10	0	0	0	0	12	0	0	12	34	4	0	38	2	0	0	2	0	0	0	0	0	4	0	0	1	0	0	0	5
7:00 to 8:00	26	5	2	33	10	0	0	10	12	1	0	13	0	0	0	0	11	0	0	11	37	5	0	42	1	0	0	1	0	0	0	0	0	4	0	0	1	0	0	0	5
7:15 to 8:15	28	6	2	36	12	1	0	13	15	1	0	16	0	0	0	0	11	0	0	11	50	5	0	55	3	0	0	3	0	0	0	0	0	4	0	0	1	0	0	0	5
7:30 to 8:30	29	4	0	33	18	1	0	19	9	3	0	12	0	0	0	0	10	0	0	10	58	4	0	62	7	0	0	7	0	0	0	0	0	4	0	0	2	0	0	0	6
7:45 to 8:45	32	4	0	36	21	1	1	23	9	3	0	12	0	0	0	0	11	0	0	11	62	3	0	65	8	0	3	11	0	0	0	0	0	2	0	1	1	1	0	1	6
8:00 to 9:00	42	2	0	44	22	1	2	25	8	3	0	11	0	0	0	0	13	1	0	14	73	2	0	75	11	0	3	14	0	0	0	0	0	2	0	1	1	2	0	1	7
AM Totals	84	7	3	94	35	2	2	39	24	5	0	29	0	0	0	0	27	1	0	28	132	7	1	140	14	0	3	17	0	0	0	0	0	6	0	1	3	2	0	1	13
15:00 to 16:00	101	0	0	101	34	1	2	37	10	0	0	10	0	0	0	0	11	0	0	11	67	0	0	67	9	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15 to 16:15	113	0	0	113	40	0	0	40	16	0	0	16	0	0	0	0	10	0	0	10	72	0	0	72	11	0	0	11	0	0	0	0	0	0	0	0	1	1	0	0	2
15:30 to 16:30	110	0	0	110	42	0	0	42	16	0	0	16	0	0	0	0	9	0	0	9	82	0	0	82	11	0	0	11	0	0	0	0	0	0	0	0	1	5	0	1	7
15:45 to 16:45	100	0	0	100	40	0	0	40	18	0	0	18	0	0	0	0	13	0	0	13	87	2	0	89	10	0	0	10	0	0	0	0	2	0	0	0	1	8	0	1	12
16:00 to 17:00	97	0	0	97	33	0	0	33	17	0	0	17	0	0	0	0	12	0	0	12	99	2	0	101	8	0	0	8	0	0	0	0	2	1	0	0	1	8	0	1	13
16:15 to 17:15	83	2	0	85	21	0	0	21	14	0	0	14	0	0	0	0	12	0	0	12	105	3	0	108	5	0	0	5	0	0	0	0	2	1	0	0	0	7	0	1	11
16:30 to 17:30	74	2	0	76	19	0	0	19	15	0	0	15	0	0	0	0	11	0	0	11	97	3	0	100	4	0	0	4	0	0	0	0	3	1	0	0	0	3	0	0	7
16:45 to 17:45	75	2	0	77	14	0	0	14	11	1	0	12	0	0	0	0	6	0	0	6	88	2	0	90	1	0	0	1	0	0	0	0	1	2	0	0	0	1	0	0	4
17:00 to 18:00	66	3	0	69	16	0	0	16	11	2	0	13	0	0	0	0	6	0	0	6	80	2	0	82	1	0	0	1	0	0	0	0	3	1	1	0	0	1	0	0	6
PM Totals	264	3	0	267	83	1	2	86	38	2	0	40	0	0	0	0	29	0	0	29	246	4	0	250	18	0	0	18	0	0	0	0	5	2	1	0	1	9	0	1	19

Suburb : Oberon

Location : 7. Oberon St / Ross St / Un-named Rd

Day/Date : Tuesday, 25th August 2015

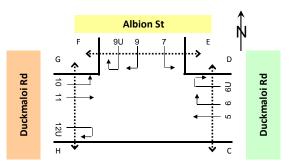
Weather : Fine


Description

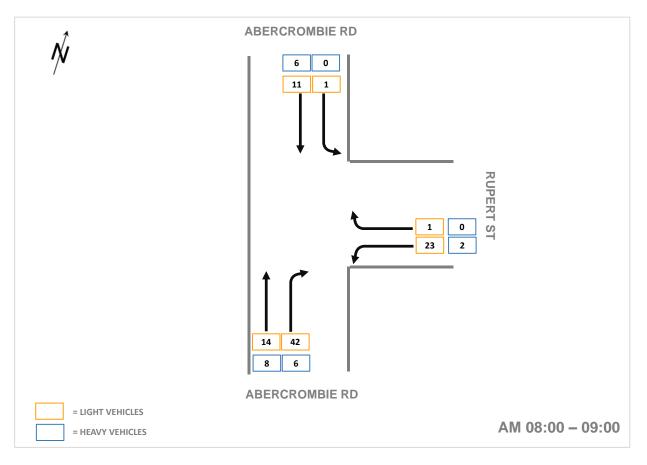
: Classified Intersection Count

: Hourly Summary

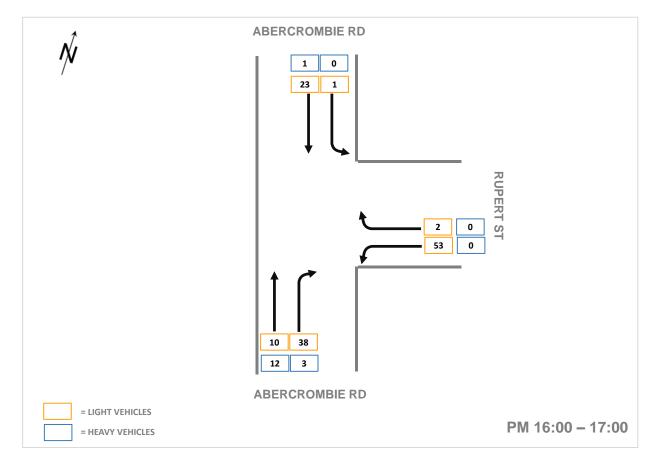
Approach								Ros	s St															Ober	on St							
Direction		Direct (Left				Direc (Thro	tion 2 ough)			Direc (Right		-		Direct (U T	ion 3U Turn)	-		Direc (Left		_		Direc (Thro		-		Direc (Right	tion 6 t Turn)	-		Direct (U T		
Time Period	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total
6:00 to 7:00	30	0	1	31	0	0	0	0	4	0	0	4	0	0	0	0	4	1	0	5	36	2	0	38	1	0	0	1	0	0	0	0
6:15 to 7:15	33	0	0	33	0	0	0	0	5	1	0	6	0	0	0	0	2	1	0	3	37	3	0	40	1	0	0	1	0	0	0	0
6:30 to 7:30	36	0	0	36	3	0	0	3	5	1	0	6	0	0	0	0	6	0	0	6	44	4	0	48	2	0	0	2	0	0	0	0
6:45 to 7:45	44	1	0	45	5	0	0	5	6	1	0	7	0	0	0	0	8	0	0	8	48	4	0	52	4	0	1	5	0	0	0	0
7:00 to 8:00	46	2	0	48	6	0	0	6	6	1	0	7	0	0	0	0	7	0	0	7	57	3	0	60	3	0	1	4	1	0	0	1
7:15 to 8:15	47	2	0	49	7	0	0	7	6	0	0	6	0	0	0	0	7	0	0	7	77	2	0	79	7	0	1	8	1	0	0	1
7:30 to 8:30	48	2	0	50	8	0	0	8	6	0	0	6	0	0	0	0	6	1	0	7	80	1	0	81	8	0	1	9	1	0	0	1
7:45 to 8:45	50	2	0	52	12	0	0	12	9	0	0	9	0	0	0	0	13	1	0	14	92	1	1	94	8	0	0	8	2	0	0	2
8:00 to 9:00	48	1	0	49	21	0	0	21	10	0	0	10	0	0	0	0	22	1	0	23	94	2	2	98	13	0	0	13	1	0	0	1
AM Totals	124	3	1	128	27	0	0	27	20	1	0	21	0	0	0	0	33	2	0	35	187	7	2	196	17	0	1	18	2	0	0	2
15:00 to 16:00	56	2	0	58	16	0	0	16	17	2	0	19	0	0	0	0	22	1	0	23	89	2	0	91	7	0	0	7	1	0	0	1
15:15 to 16:15	69	2	0	71	13	0	0	13	15	2	0	17	0	0	0	0	19	1	0	20	93	2	0	95	8	0	0	8	2	0	0	2
15:30 to 16:30	66	2	0	68	11	0	0	11	17	2	0	19	0	0	0	0	15	0	0	15	101	3	0	104	11	0	0	11	2	0	0	2
15:45 to 16:45	59	1	0	60	8	0	0	8	14	1	0	15	0	0	0	0	17	0	0	17	92	3	2	97	8	0	0	8	2	0	0	2
16:00 to 17:00	55	1	0	56	5	0	0	5	14	0	0	14	0	0	0	0	18	0	0	18	97	2	2	101	10	0	0	10	1	0	0	1
16:15 to 17:15	45	1	0	46	7	0	0	7	15	0	0	15	0	0	0	0	19	0	0	19	95	2	2	99	9	0	0	9	0	0	0	0
16:30 to 17:30	54	1	1	56	9	0	0	9	12	0	0	12	0	0	0	0	17	0	0	17	97	1	3	101	5	0	0	5	0	0	0	0
16:45 to 17:45	51	1	1	53	8	0	0	8	17	0	0	17	0	0	0	0	15	0	0	15	100	1	2	103	6	0	0	6	0	0	0	0
17:00 to 18:00	56	0	1	57	4	0	0	4	22	0	0	22	0	0	0	0	16	0	0	16	104	2	3	109	4	0	0	4	1	0	0	1
PM Totals	167	3	1	171	25	0	0	25	53	2	0	55	0	0	0	0	56	1	0	57	290	6	5	301	21	0	0	21	3	0	0	3


Approach								Un-na	med Rd															Obe	ron St												Crossing	g			
Direction		Direc (Left		-			ction 8 ough)	-			ection 9 ht Turn)	_			tion 9U Furn)			Direct (Left		-		Direct (Thre		-		Direct (Right		-			ion 12U Turn)						edestria	-			
Time Period	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	А	в	с	D	E	F	G	н	Total
6:00 to 7:00	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	2	0	0	2	12	2	1	15	19	0	0	19	1	0	0	1	0	0	1	0	1	0	0	0	2
6:15 to 7:15	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	4	0	0	4	18	2	1	21	16	1	0	17	0	0	0	0	1	0	2	0	1	0	0	0	4
6:30 to 7:30	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	5	0	0	5	23	3	2	28	17	5	1	23	1	0	0	1	1	0	2	0	2	0	0	0	5
6:45 to 7:45	1	0	0	1	2	0	0	2	1	0	0	1	0	0	0	0	6	1	0	7	34	3	2	39	24	7	1	32	2	0	0	2	1	0	2	0	4	1	0	0	8
7:00 to 8:00	1	0	0	1	5	0	0	5	3	0	0	3	0	0	0	0	7	1	0	8	41	2	1	44	28	8	1	37	2	0	0	2	1	0	3	0	5	2	0	0	11
7:15 to 8:15	1	0	0	1	5	0	0	5	4	0	0	4	0	0	0	0	10	1	0	11	44	1	1	46	30	8	1	39	2	0	0	2	0	2	1	0	5	3	0	2	13
7:30 to 8:30	2	0	0	2	6	0	0	6	4	0	0	4	0	0	0	0	19	1	0	20	47	0	0	47	23	5	0	28	1	0	0	1	0	2	1	0	5	9	0	2	19
7:45 to 8:45	4	0	0	4	5	0	0	5	7	0	0	7	0	0	0	0	21	0	0	21	53	2	0	55	26	4	0	30	2	0	0	2	1	2	1	2	7	8	0	2	23
8:00 to 9:00	10	0	0	10	6	0	0	6	8	0	0	8	0	0	0	0	27	1	0	28	66	2	0	68	21	3	0	24	2	0	0	2	1	2	0	5	7	8	2	3	28
AM Totals	11	0	0	11	11	0	0	11	12	0	0	12	0	0	0	0	36	2	0	38	119	6	2	127	68	11	1	80	5	0	0	5	2	2	4	5	13	10	2	3	41
15:00 to 16:00	13	1	0	14	10	1	0	11	20	0	0	20	0	0	0	0	21	1	0	22	127	1	0	128	50	0	2	52	3	0	0	3	6	7	8	7	8	6	2	5	49
15:15 to 16:15	13	1	0	14	9	1	0	10	21	0	0	21	0	0	0	0	30	0	0	30	137	0	1	138	56	0	2	58	4	0	0	4	5	6	8	8	8	6	1	4	46
15:30 to 16:30	13	0	0	13	13	0	0	13	17	0	0	17	0	0	0	0	35	0	0	35	137	0	1	138	64	0	2	66	7	0	0	7	4	4	8	6	9	10	2	5	48
15:45 to 16:45	9	0	0	9	12	0	0	12	21	0	0	21	0	0	0	0	46	0	0	46	140	2	2	144	68	0	0	68	13	0	0	13	4	3	6	4	13	7	4	4	45
16:00 to 17:00	13	0	0	13	11	0	0	11	23	0	0	23	0	0	0	0	45	1	0	46	140	2	2	144	69	0	0	69	13	0	0	13	2	3	3	3	16	10	4	4	45
16:15 to 17:15	12	0	0	12	12	0	0	12	26	1	0	27	0	0	0	0	43	1	0	44	132	3	1	136	71	0	0	71	14	0	0	14	2	6	3	4	14	11	4	8	52
16:30 to 17:30	11	0	0	11	9	0	0	9	28	1	0	29	0	0	0	0	32	1	0	33	142	4	1	147	61	0	0	61	12	0	0	12	6	9	4	4	15	12	5	7	62
16:45 to 17:45	15	0	0	15	7	0	0	7	20	1	0	21	0	0	0	0	21	1	0	22	142	3	0	145	60	0	0	60	8	0	0	8	9	8	3	5	13	12	3	9	62
17:00 to 18:00	13	0	0	13	9	0	0	9	14	1	0	15	0	0	0	0	18	1	0	19	130	4	1	135	62	0	0	62	7	0	0	7	9	7	6	4	10	9	3	7	55
PM Totals	39	1	0	40	30	1	0	31	57	1	0	58	0	0	0	0	84	3	0	87	397	7	3	407	181	0	2	183	23	0	0	23	17	17	17	14	34	25	9	16	149

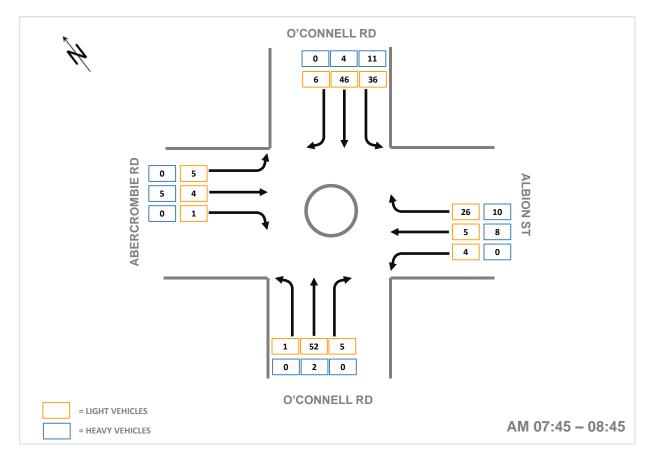
Suburb	: Oberon
Location	: 8. Duckmaloi Rd / Albion St
Day/Date	: Tuesday, 25th August 2015
Weather	: Fine
Description	: Classified Intersection Count
	: Hourly Summary

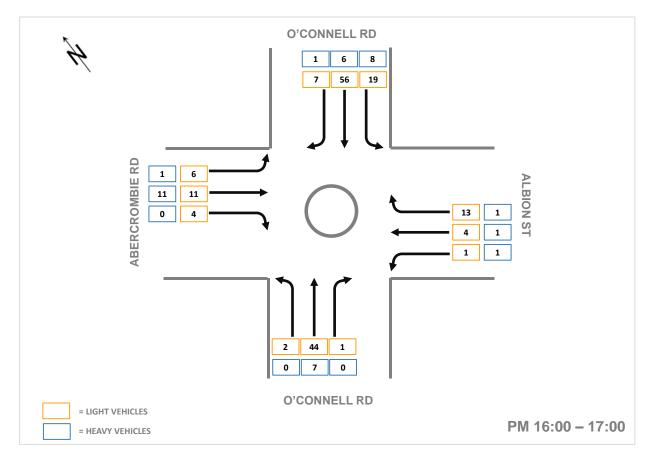

Approach					Duckm	naloi Rd							
Direction			Direct (Thro				Direc (Right	tion 6			Directi (U Tu		
										ر			
Time Period		Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total
6:00 to 7:00		6	0	0	6	7	3	0	10	0	0	0	0
6:15 to 7:15		10	0	0	10	11	3	0	14	0	0	0	0
6:30 to 7:30		15	0	0	15	13	4	0	17	0	0	0	0
6:45 to 7:45		18	0	0	18	13	4	0	17	0	0	0	0
7:00 to 8:00		25	0	0	25	10	5	0	15	0	0	0	0
7:15 to 8:15		30	1	0	31	11	8	0	19	0	0	0	0
7:30 to 8:30		37	1	1	39	12	10	0	22	0	0	0	0
7:45 to 8:45		45	2	1	48	13	12	0	25	0	0	0	0
8:00 to 9:00		46	3	1	50	15	11	0	26	0	0	0	0
AM Totals		77	3	1	81	32	19	0	51	0	0	0	0
15:00 to 16:00		24	2	1	27	7	11	0	18	0	0	0	0
15:15 to 16:15		32	1	1	34	9	10	0	19	0	0	0	0
15:30 to 16:30		35	1	3	39	10	11	1	22	0	0	0	0
15:45 to 16:45		30	1	3	34	14	7	1	22	0	0	0	0
16:00 to 17:00		29	1	2	32	14	7	1	22	0	0	0	0
16:15 to 17:15		26	1	2	29	12	4	1	17	0	0	0	0
16:30 to 17:30		24	0	2	26	13	2	0	15	0	0	0	0
16:45 to 17:45		26	0	2	28	8	2	0	10	0	0	0	0
17:00 to 18:00		28	0	2	30	10	0	0	10	0	0	0	0
PM Totals		81	3	5	89	31	18	1	50	0	0	0	0

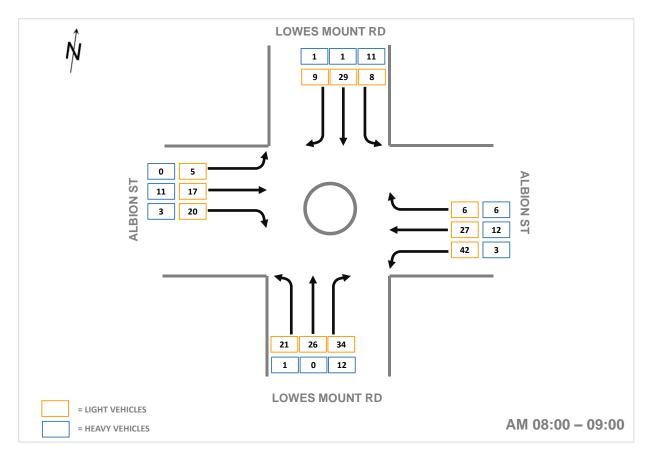
Approach					Alb	on St															Duckm	aloi Rd				
Direction			tion 7 Turn)				Direc (Right	tion 9 : Turn)			Direct (U T	ion 9U urn)			Direct (Left				Direct (Thre		•					Direction 12U (U Turn)
Time Period	Cars	Trucks	Buses	Total		Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total			Cars	Cars	Cars Trucks Buses
5:00 to 7:00	1	6	0	7		0	0	0	0	0	0	0	0	2	0	0	2	6	0	1	7			0	0 0	0 0 0
5:15 to 7:15	1	6	0	7		0	1	0	1	0	0	0	0	2	0	0	2	9	1	1	11			0	0 0	0 0 0
5:30 to 7:30	2	6	0	8		0	1	0	1	0	0	0	0	4	1	0	5	10	1	2	13			0	0 0	0 0 0
5:45 to 7:45	4	8	0	12		3	1	0	4	0	0	0	0	6	1	0	7	13	1	2	16			0	0 0	0 0 0
7:00 to 8:00	6	7	0	13		4	1	0	5	0	0	0	0	4	1	0	5	15	1	1	17			0	0 0	0 0 0
7:15 to 8:15	6	10	0	16		5	0	0	5	0	0	0	0	4	1	0	5	16	0	1	17			0	0 0	0 0 0
7:30 to 8:30	6	11	0	17		7	0	1	8	0	0	0	0	2	0	0	2	18	0	0	18			0	0 0	0 0 0
7:45 to 8:45	5	10	0	15		6	0	1	7	0	0	0	0	2	0	0	2	23	0	0	23			0	0 0	0 0 0
3:00 to 9:00	6	9	0	15		5	0	1	6	0	0	0	0	3	0	0	3	22	0	0	22			0	0 0	0 0 0
AM Totals	13	22	0	35		9	1	1	11	0	0	0	0	9	1	0	10	43	1	2	46			0	0 0	0 0 0
5:00 to 16:00	13	2	0	15		3	0	0	3	0	0	0	0	11	1	1	13	40	0	1	41			0	0 0	0 0 0
5:15 to 16:15	13	3	0	16		8	0	0	8	0	0	0	0	9	1	1	11	40	0	1	41			0	0 0	0 0 0
5:30 to 16:30	13	3	0	16		9	0	0	9	0	0	0	0	8	1	0	9	41	0	1	42			0	0 0	0 0 0
5:45 to 16:45	14	3	0	17		6	0	0	6	0	0	0	0	10	0	0	10	40	1	0	41			0	0 0	0 0 0
6:00 to 17:00	16	5	0	21		6	1	0	7	0	0	0	0	10	0	0	10	43	1	0	44			0	0 0	0 0 0
6:15 to 17:15	14	3	0	17		1	1	0	2	0	0	0	0	10	0	0	10	42	1	0	43			0	0 0	0 0 0
6:30 to 17:30	11	4	0	15		0	1	0	1	0	0	0	0	13	0	0	13	41	1	0	42			0	0 0	0 0 0
6:45 to 17:45	13	4	0	17		2	1	0	3	0	0	0	0	12	0	0	12	37	1	0	38			0	0 0	0 0 0
7:00 to 18:00	11	2	0	13		2	0	0	2	0	0	0	0	11	0	0	11	32	2	1	35			0	0 0	0 0 0
PM Totals	40	9	0	49		11	1	0	12	0	0	0	0	32	1	1	34	115	3	2	120		ſ	0	0 0	0 0 0

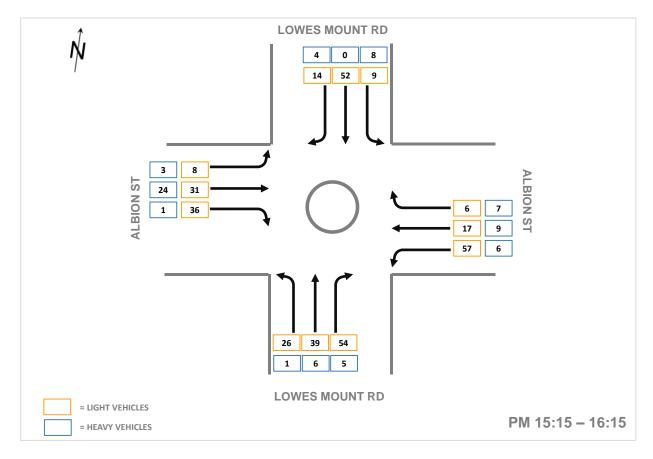


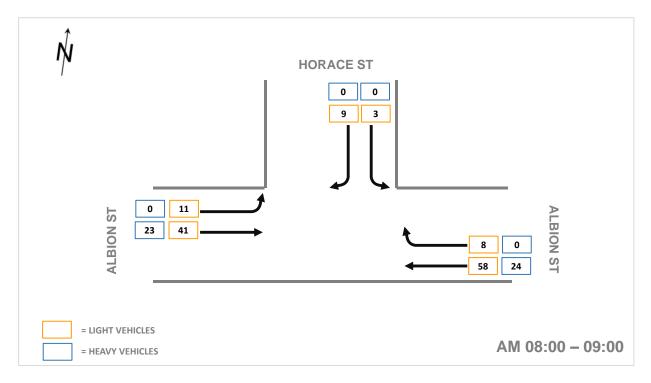
		Crossing edestria				
с	D	E	F	G	н	Total
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	1

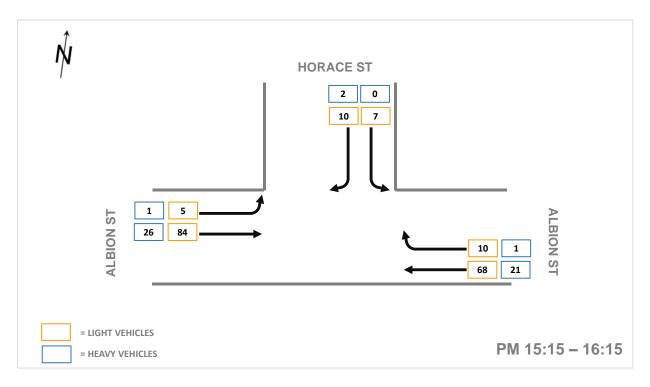

APPENDIX C: VEHICLE TURNING MOVEMENTS (EXISTING CONDITIONS)

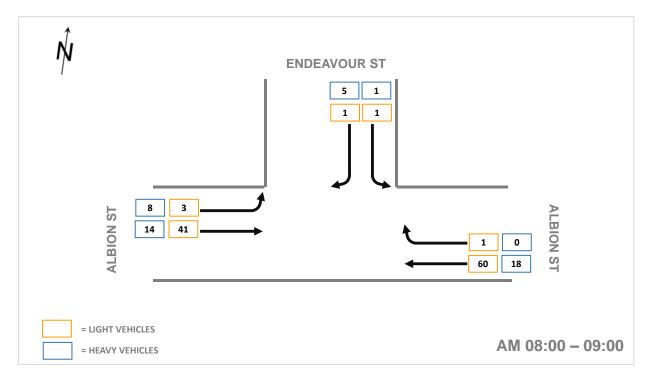

Site 1 – Abercrombie Road and Rupert Street, AM peak hour

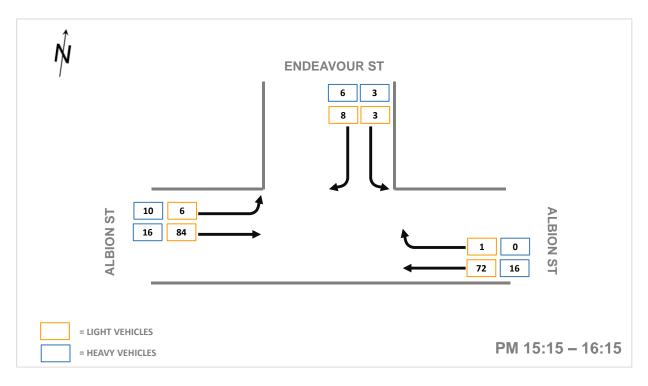

Site 1 – Abercrombie Road and Rupert Street, PM peak hour

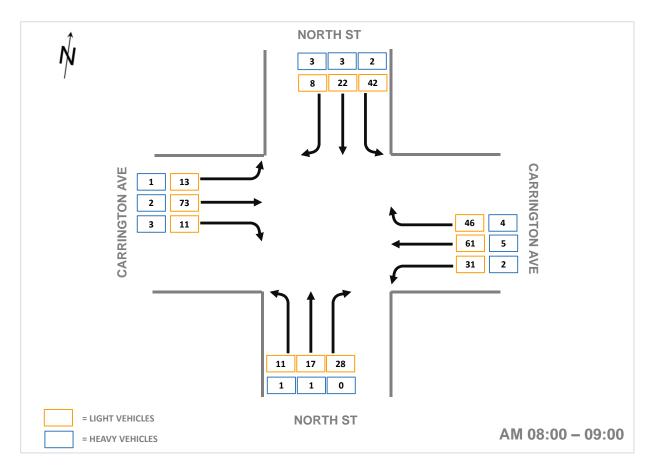

Site 2 – O'Connell Road and Albion Street, AM peak hour

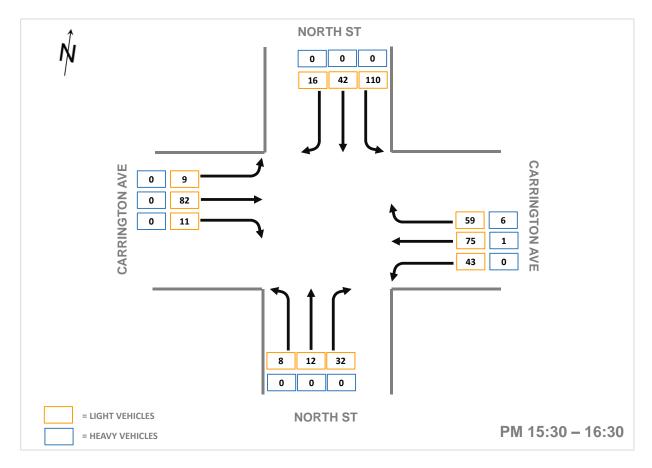

Site 2 – O'Connell Road and Albion Street, PM peak hour

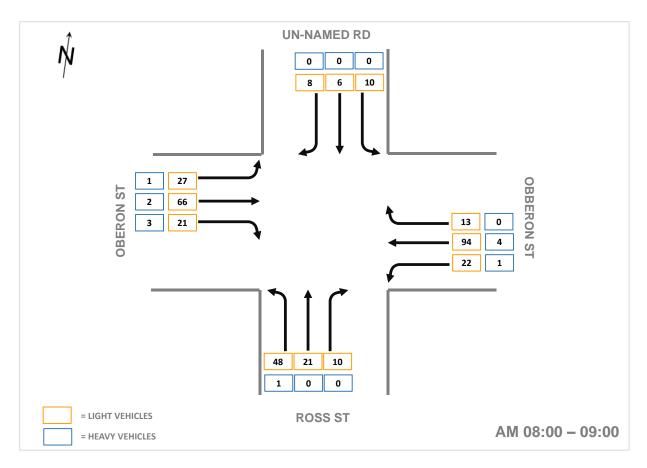

Site 3 - Lowes Mount Road and Albion Street, AM peak hour

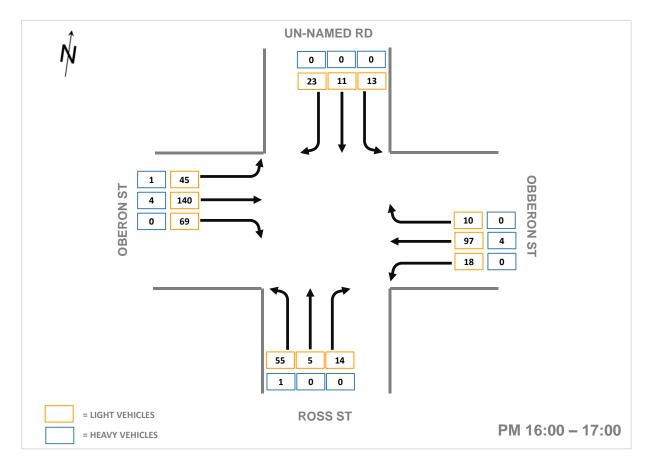

Site 3 – Lowes Mount Road and Albion Street, PM peak hour

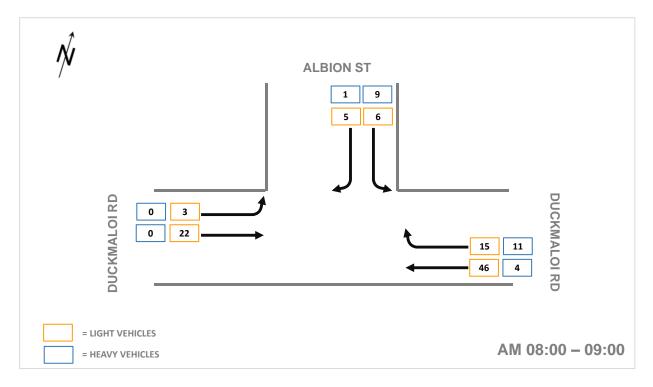

Site 4 – Albion Street and Horace Street, AM peak hour

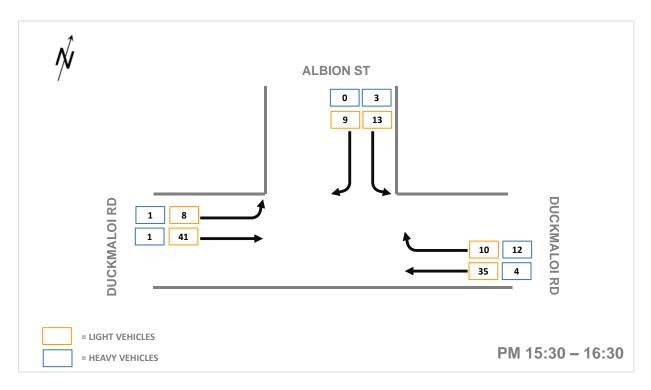

Site 4 – Albion Street and Horace Street, PM peak hour


Site 5 – Albion Street and Endeavour Street, AM peak hour


Site 5 – Albion Street and Endeavour Street, PM peak hour


Site 6 - North Street and Carrington Avenue, AM peak hour


Site 6 - North Street and Carrington Avenue, PM peak hour


Site 7 – Oberon Street, Ross Street and unnamed road, AM peak hour

Site 7 – Oberon Street, Ross Street and unnamed road, PM peak hour

Site 8 - Duckmaloi Road and Albion Road, AM peak hour

Site 8 – Duckmaloi Road and Albion Road, PM peak hour

APPENDIX D: SIDRA INTERSECTION RESULTS (EXISTING CONDITIONS)

igvee Site: Site 1: Abercrombie Rd - Rupert St (AM) Peak - Existing

Site 1: Abercrombie Rd - Rupert St (AM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Osutha	A b a m a b b	veh/h	%	v/c	sec		veh	m		per veh	km/h
		ie Rd - south	0								
2	T1	23	36.4	0.040	0.0	LOS A	0.2	1.3	0.01	0.09	59.1
3	R2	51	12.5	0.040	5.7	LOS A	0.2	1.3	0.09	0.53	52.6
Appro	ach	74	20.0	0.040	3.9	NA	0.2	1.3	0.06	0.39	54.5
East: F	Rupert St - e	astern leg									
4	L2	26	8.0	0.022	5.7	LOS A	0.1	0.6	0.07	0.55	53.1
6	R2	1	0.0	0.022	6.1	LOS A	0.1	0.6	0.07	0.55	53.2
Appro	ach	27	7.7	0.022	5.7	LOS A	0.1	0.6	0.07	0.55	53.1
North:	Abercrombi	e Rd - northe	rn leg								
7	L2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
8	T1	18	35.3	0.011	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	19	33.3	0.011	0.3	NA	0.0	0.0	0.00	0.03	59.6
All Vel	nicles	120	19.3	0.040	3.7	NA	0.2	1.3	0.06	0.37	54.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 3:55:44 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 1 - Abercrombie Rd - Rupert St.sip6

▽ Site: Site 1: Abercrombie Rd - Rupert St (PM) Peak - Existing

Site 1: Abercrombie Rd - Rupert St (AM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Cauthy	Abererenshi	veh/h	%	v/c	sec		veh	m		per veh	km/h
		e Rd - south	0								
2	T1	23	54.5	0.036	0.0	LOS A	0.1	1.2	0.03	0.16	58.3
3	R2	43	7.3	0.036	5.6	LOS A	0.1	1.2	0.09	0.49	52.9
Approa	ach	66	23.8	0.036	3.7	NA	0.1	1.2	0.07	0.37	54.7
East: F	Rupert St - e	astern leg									
4	L2	56	0.0	0.045	5.6	LOS A	0.2	1.1	0.08	0.55	53.4
6	R2	2	0.0	0.045	6.1	LOS A	0.2	1.1	0.08	0.55	53.1
Approa	ach	58	0.0	0.045	5.6	LOS A	0.2	1.1	0.08	0.55	53.3
North:	Abercrombi	e Rd - northe	rn leg								
7	L2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
8	T1	25	4.2	0.013	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	26	4.0	0.013	0.2	NA	0.0	0.0	0.00	0.02	59.7
All Veh	nicles	151	11.2	0.045	3.8	NA	0.2	1.2	0.06	0.38	55.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 3:55:47 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 1 - Abercrombie Rd - Rupert St.sip6

W Site: Site 2: O'Connell Rd - Abercrombie Rd - Albion St (AM) Peak - Existing

Site 2: O'Connell Rd - Abercrombie Rd - Albion St (AM) Peak - Existing Roundabout

		ormance - \						()			
Mov ID	OD Mov	Demano Total	Hows HV	Deg. Satn	Average	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Data	Average
U	IVIOV	veh/h	пv %	V/C	Delay sec	Service	venicies veh	m	Queueu	Stop Rate per veh	Speed km/h
South	: O'Connell	Rd - southern									
1	L2	1	0.0	0.049	4.1	LOS A	0.2	1.7	0.20	0.43	54.3
2	T1	57	3.7	0.049	4.4	LOS A	0.2	1.7	0.20	0.43	55.6
3	R2	5	0.0	0.049	9.0	LOS A	0.2	1.7	0.20	0.43	55.6
Appro	ach	63	3.3	0.049	4.8	LOS A	0.2	1.7	0.20	0.43	55.6
East: /	Albion St - e	eastern leg									
4	L2	4	0.0	0.050	4.1	LOS A	0.2	2.1	0.20	0.55	52.3
5	T1	14	61.5	0.050	5.0	LOS A	0.2	2.1	0.20	0.55	52.2
6	R2	38	27.8	0.050	9.4	LOS A	0.2	2.1	0.20	0.55	52.5
Appro	ach	56	34.0	0.050	7.9	LOS A	0.2	2.1	0.20	0.55	52.4
North:	O'Connell I	Rd - northern	leg								
7	L2	49	23.4	0.078	4.2	LOS A	0.4	3.0	0.10	0.44	54.2
8	T1	53	8.0	0.078	4.2	LOS A	0.4	3.0	0.10	0.44	56.1
9	R2	6	0.0	0.078	8.8	LOS A	0.4	3.0	0.10	0.44	56.3
Appro	ach	108	14.6	0.078	4.5	LOS A	0.4	3.0	0.10	0.44	55.2
West:	Abercrombi	ie Rd - wester	rn leg								
10	L2	5	0.0	0.015	4.3	LOS A	0.1	0.6	0.26	0.44	54.2
11	T1	9	55.6	0.015	5.2	LOS A	0.1	0.6	0.26	0.44	54.2
12	R2	1	0.0	0.015	9.1	LOS A	0.1	0.6	0.26	0.44	55.5
Appro	ach	16	33.3	0.015	5.2	LOS A	0.1	0.6	0.26	0.44	54.3
All Vel	nicles	243	17.3	0.078	5.4	LOS A	0.4	3.0	0.16	0.46	54.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:09:52 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 2 - O'Connell Rd - Abercrombie Rd - Albion St.sip6

W Site: Site 2: O'Connell Rd - Abercrombie Rd - Albion St (PM) Peak - Existing

Site 2: O'Connell Rd - Abercrombie Rd - Albion St (PM) Peak - Existing Roundabout

		formance - \									
Mov	OD	Demano		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	: O'Connell	Rd - southerr		V/C	360		VCII			perven	K111/11
1	L2	2	0.0	0.043	4.0	LOS A	0.2	1.6	0.12	0.40	54.9
2	T1	54	13.7	0.043	4.3	LOS A	0.2	1.6	0.12	0.40	55.9
3	R2	1	0.0	0.043	8.8	LOS A	0.2	1.6	0.12	0.40	56.2
Appro	ach	57	13.0	0.043	4.4	LOS A	0.2	1.6	0.12	0.40	55.9
East: /	Albion St - e	eastern leg									
4	L2	2	50.0	0.019	4.8	LOS A	0.1	0.6	0.22	0.56	50.9
5	T1	5	20.0	0.019	4.6	LOS A	0.1	0.6	0.22	0.56	53.1
6	R2	15	7.1	0.019	9.1	LOS A	0.1	0.6	0.22	0.56	53.2
Appro	ach	22	14.3	0.019	7.7	LOS A	0.1	0.6	0.22	0.56	53.0
North:	O'Connell	Rd - northern	leg								
7	L2	28	29.6	0.077	4.3	LOS A	0.4	3.0	0.14	0.43	53.7
8	T1	65	9.7	0.077	4.3	LOS A	0.4	3.0	0.14	0.43	55.8
9	R2	8	12.5	0.077	9.0	LOS A	0.4	3.0	0.14	0.43	55.4
Appro	ach	102	15.5	0.077	4.7	LOS A	0.4	3.0	0.14	0.43	55.2
West:	Abercromb	oie Rd - wester	rn leg								
10	L2	7	14.3	0.032	4.3	LOS A	0.1	1.3	0.22	0.45	53.6
11	T1	23	50.0	0.032	5.0	LOS A	0.1	1.3	0.22	0.45	54.2
12	R2	4	0.0	0.032	9.0	LOS A	0.1	1.3	0.22	0.45	55.3
Appro	ach	35	36.4	0.032	5.3	LOS A	0.1	1.3	0.22	0.45	54.2
All Vel	nicles	216	18.0	0.077	5.0	LOS A	0.4	3.0	0.16	0.44	54.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:09:51 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 2 - O'Connell Rd - Abercrombie Rd - Albion St.sip6

Site: Site 3: Lowes Mount Rd - Albion St - North St (AM) Peak - Existing

Site 3: Lowes Mount Rd - Albion St - North St (AM) Peak - Existing Roundabout

		ormance - \									
Mov	OD	Demano		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/h
South	: North St - s		70	V/C	sec	_	ven	m	_	perven	K111/11
1	L2	23	4.5	0.081	4.2	LOS A	0.4	3.1	0.22	0.53	53.2
2	 T1	27	0.0	0.081	4.4	LOSA	0.4	3.1	0.22	0.53	54.6
3	R2	48	26.1	0.081	9.4	LOSA	0.4	3.1	0.22	0.53	53.5
Appro		99	13.8	0.081	6.8	LOSA	0.4	3.1	0.22	0.53	53.7
			10.0	0.001	0.0	LOON	0.4	0.1	0.22	0.00	00.1
East:	Albion St - ea	astern leg									
4	L2	47	6.7	0.085	4.2	LOS A	0.4	3.4	0.21	0.46	54.3
5	T1	41	30.8	0.085	4.7	LOS A	0.4	3.4	0.21	0.46	55.1
6	R2	13	50.0	0.085	9.7	LOS A	0.4	3.4	0.21	0.46	53.7
Appro	ach	101	21.9	0.085	5.1	LOS A	0.4	3.4	0.21	0.46	54.5
North:	Lowes Mou	int Rd - north	ern leg								
7	L2	20	57.9	0.056	5.2	LOS A	0.3	2.1	0.27	0.49	52.0
8	T1	32	3.3	0.056	4.6	LOS A	0.3	2.1	0.27	0.49	55.0
9	R2	11	10.0	0.056	9.4	LOS A	0.3	2.1	0.27	0.49	54.6
Appro	ach	62	22.0	0.056	5.6	LOS A	0.3	2.1	0.27	0.49	53.9
West:	Albion St - v	vestern lea									
10	L2	5	0.0	0.053	4.3	LOS A	0.2	2.1	0.26	0.52	53.0
11	T1	29	39.3	0.053	5.0	LOS A	0.2	2.1	0.26	0.52	53.3
12	R2	24	13.0	0.053	9.3	LOS A	0.2	2.1	0.26	0.52	53.7
Appro	ach	59	25.0	0.053	6.7	LOS A	0.2	2.1	0.26	0.52	53.4
All Ve	hicles	321	20.0	0.085	6.0	LOS A	0.4	3.4	0.23	0.50	54.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:21:07 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 3 - Lowes Mount Rd - Albion St - North St.sip6

V Site: Site 3: Lowes Mount Rd - Albion St - North St (PM) Peak - Existing

Site 3: Lowes Mount Rd - Albion St -North St (PM) Peak - Existing Roundabout

Move	ment Perf	ormance - \	/ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/h
South	North St -	southern leg	/0		300		Ven			perven	KITI/11
1	L2	28	3.7	0.108	4.2	LOS A	0.5	4.1	0.22	0.53	53.1
2	T1	47	13.3	0.108	4.5	LOS A	0.5	4.1	0.22	0.53	54.2
3	R2	62	8.5	0.108	9.1	LOS A	0.5	4.1	0.22	0.53	54.1
Appro	ach	138	9.2	0.108	6.5	LOS A	0.5	4.1	0.22	0.53	53.9
East: /	Albion St - e	astern leg									
4	L2	66	9.5	0.097	4.5	LOS A	0.5	3.9	0.29	0.49	54.0
5	T1	27	34.6	0.097	5.1	LOS A	0.5	3.9	0.29	0.49	54.8
6	R2	14	53.8	0.097	10.1	LOS A	0.5	3.9	0.29	0.49	53.4
Appro	ach	107	21.6	0.097	5.4	LOS A	0.5	3.9	0.29	0.49	54.1
North:	Lowes Mou	unt Rd - north	ern leg								
7	L2	18	47.1	0.085	5.5	LOS A	0.4	3.0	0.34	0.52	52.1
8	T1	55	0.0	0.085	4.9	LOS A	0.4	3.0	0.34	0.52	54.8
9	R2	19	22.2	0.085	9.9	LOS A	0.4	3.0	0.34	0.52	53.8
Appro	ach	92	13.8	0.085	6.0	LOS A	0.4	3.0	0.34	0.52	54.0
West:	Albion St - v	western leg									
10	L2	12	27.3	0.103	4.9	LOS A	0.5	4.2	0.31	0.54	52.0
11	T1	58	43.6	0.103	5.3	LOS A	0.5	4.2	0.31	0.54	53.0
12	R2	39	2.7	0.103	9.3	LOS A	0.5	4.2	0.31	0.54	53.9
Appro	ach	108	27.2	0.103	6.7	LOS A	0.5	4.2	0.31	0.54	53.2
All Vel	nicles	445	17.5	0.108	6.2	LOS A	0.5	4.2	0.28	0.52	53.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:21:09 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 3 - Lowes Mount Rd - Albion St - North St.sip6

igvee Site: Site 4: Horace St - Albion St (AM) Peak - Existing

Site 4: Horace St - Albion St (AM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - \	/ehicles								
Mov	OD	Demanc	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
- Castu /	Ubien Ct. w	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Albion St - w	0									
5	T1	86	29.3	0.057	0.0	LOS A	0.1	0.4	0.04	0.05	59.2
6	R2	8	0.0	0.057	5.7	LOS A	0.1	0.4	0.04	0.05	57.0
Approa	ach	95	26.7	0.057	0.5	NA	0.1	0.4	0.04	0.05	59.0
North:	Horace St -	northern leg									
7	L2	3	0.0	0.011	5.7	LOS A	0.0	0.2	0.20	0.56	53.1
9	R2	9	0.0	0.011	6.0	LOS A	0.0	0.2	0.20	0.56	52.6
Approa	ach	13	0.0	0.011	5.9	LOS A	0.0	0.2	0.20	0.56	52.7
West:	Albion St - w	estern leg									
10	L2	12	0.0	0.049	5.5	LOS A	0.0	0.0	0.00	0.09	57.3
11	T1	67	35.9	0.049	0.0	LOS A	0.0	0.0	0.00	0.09	58.9
Approa	ach	79	30.7	0.049	0.8	NA	0.0	0.0	0.00	0.09	58.6
All Vel	nicles	186	26.6	0.057	1.0	NA	0.1	0.4	0.03	0.10	58.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:29:56 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 4 - Horace St - Albion St.sip6

igvee Site: Site 4: Horace St - Albion St (PM) Peak - Existing

Site 4: Horace St - Albion St (PM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - \	/ehicles								
Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Fact /	Ubien Ct. w	veh/h	%	v/c	sec		veh	m		per veh	km/h
East: A	Albion St - w	Ŭ									
5	T1	94	23.6	0.063	0.1	LOS A	0.1	0.7	0.06	0.07	59.1
6	R2	12	9.1	0.063	6.0	LOS A	0.1	0.7	0.06	0.07	56.4
Approach 105 22.0 0.063 0.7 NA 0.1 0.7 0.06 North: Horace St - northern leg 7 L2 7 0.0 0.018 5.9 LOS A 0.1 0.5 0.24					0.07	58.8					
North:	Horace St -	northern leg									
7	L2	7	0.0	0.018	5.9	LOS A	0.1	0.5	0.24	0.57	52.9
9	R2	13	16.7	0.018	6.5	LOS A	0.1	0.5	0.24	0.57	51.7
Approa	ach	20	10.5	0.018	6.3	LOS A	0.1	0.5	0.24	0.57	52.1
West:	Albion St - v	vestern leg									
10	L2	6	16.7	0.072	5.7	LOS A	0.0	0.0	0.00	0.03	57.2
11	T1	116	23.6	0.072	0.0	LOS A	0.0	0.0	0.00	0.03	59.7
Approa	ach	122	23.3	0.072	0.3	NA	0.0	0.0	0.00	0.03	59.5
All Vel	nicles	247	21.7	0.072	1.0	NA	0.1	0.7	0.05	0.09	58.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:29:57 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 4 - Horace St - Albion St.sip6

V Site: Site 5: Endeavour St - Albion St (AM) Peak - Existing

Site 5: Endeavour St - Albion St (AM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - `	Vehicles								
Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
- Castu /	Ubien Ct. e.	veh/h	%	v/c	sec		veh	m		per veh	km/h
East: A	Albion St - ea	0									
5	T1	82	23.1	0.050	0.0	LOS A	0.0	0.1	0.01	0.02	59.9
6	R2	1	100.0	0.050	6.6	LOS A	0.0	0.1	0.01	0.02	55.0
Approa	ach	83	24.1	0.050	0.2	NA	0.0	0.1	0.01	0.02	59.8
North:	Endeavour	St - northerr	n leg								
7	L2	2	50.0	0.010	6.4	LOS A	0.0	0.4	0.21	0.56	51.0
9	R2	6	83.3	0.010	7.4	LOS A	0.0	0.4	0.21	0.56	49.0
Appro	ach	8	75.0	0.010	7.2	LOS A	0.0	0.4	0.21	0.56	49.5
West:	Albion St - v	vestern leg									
10	L2	12	72.7	0.044	6.4	LOS A	0.0	0.0	0.00	0.10	54.5
11	T1	58	25.5	0.044	0.0	LOS A	0.0	0.0	0.00	0.10	59.6
Approa	ach	69	33.3	0.044	1.1	NA	0.0	0.0	0.00	0.10	58.7
All Vel	nicles	161	30.7	0.050	0.9	NA	0.0	0.4	0.02	0.08	58.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:40:15 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 5 - Endeavour St - Albion St.sip6

∇ Site: Site 5: Endeavour St - Albion St (PM) Peak - Existing

Site 5: Endeavour St - Albion St (PM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - V	/ehicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
E a a fu d		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: A	Ibion St - e	astern leg									
5	T1	93	18.2	0.054	0.0	LOS A	0.0	0.1	0.01	0.01	59.9
6	R2	1	0.0	0.054	5.8	LOS A	0.0	0.1	0.01	0.01	57.6
Approa	ach	94	18.0	0.054	0.1	NA	0.0	0.1	0.01	0.01	59.9
North:	Endeavour	St - northern	leg								
7	L2	6	50.0	0.023	6.6	LOS A	0.1	0.7	0.26	0.58	50.9
9	R2	15	42.9	0.023	7.0	LOS A	0.1	0.7	0.26	0.58	50.6
Approa	ach	21	45.0	0.023	6.9	LOS A	0.1	0.7	0.26	0.58	50.7
West:	Albion St - v	vestern leg									
10	L2	17	62.5	0.073	6.3	LOS A	0.0	0.0	0.00	0.08	55.0
11	T1	105	16.0	0.073	0.0	LOS A	0.0	0.0	0.00	0.08	59.6
Approa	ach	122	22.4	0.073	0.9	NA	0.0	0.0	0.00	0.08	58.9
All Ver	icles	237	22.7	0.073	1.1	NA	0.1	0.7	0.03	0.10	58.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:40:16 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 5 - Endeavour St - Albion St.sip6

∇ Site: Site 6: North St - Carrington Ave (AM) Peak - Existing

Site 6: North St - Carrington Ave (AM) Peak - Existing Giveway / Yield (Two-Way)

		ormance - \									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	: North St - s	southern leg	/0	V/C	360		ven			perven	N111/11
1	L2	13	8.3	0.027	5.8	LOS A	0.1	0.7	0.19	0.54	53.3
2	T1	19	5.6	0.027	5.1	LOS A	0.1	0.7	0.19	0.54	53.7
3	R2	29	0.0	0.035	6.9	LOS A	0.1	0.8	0.35	0.62	52.3
Appro	ach	61	3.4	0.035	6.1	LOS A	0.1	0.8	0.27	0.58	52.9
East: (Carrington A	ve - eastern	leg								
4	L2	35	6.1	0.091	5.8	LOS A	0.4	2.7	0.16	0.30	54.8
5	T1	69	7.6	0.091	0.2	LOS A	0.4	2.7	0.16	0.30	56.5
6	R2	53	8.0	0.091	5.9	LOS A	0.4	2.7	0.16	0.30	54.4
Appro	ach	157	7.4	0.091	3.3	NA	0.4	2.7	0.16	0.30	55.4
North:	North St - r	northern leg									
7	L2	46	4.5	0.031	5.8	LOS A	0.1	0.9	0.17	0.54	52.9
8	T1	26	12.0	0.042	5.3	LOS A	0.1	1.2	0.34	0.58	53.2
9	R2	12	27.3	0.042	7.3	LOS A	0.1	1.2	0.34	0.58	52.0
Appro	ach	84	10.0	0.042	5.9	LOS A	0.1	1.2	0.24	0.56	52.9
West:	Carrington /	Ave - western	leg								
10	L2	15	7.1	0.061	5.8	LOS A	0.1	1.0	0.09	0.15	56.4
11	T1	79	2.7	0.061	0.1	LOS A	0.1	1.0	0.09	0.15	58.3
12	R2	15	21.4	0.061	6.1	LOS A	0.1	1.0	0.09	0.15	55.5
Appro	ach	108	5.8	0.061	1.7	NA	0.1	1.0	0.09	0.15	57.7
All Vel	nicles	411	6.9	0.091	3.8	NA	0.4	2.7	0.17	0.35	55.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:44:36 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 6 - North St - Carrington Ave.sip6

∇ Site: Site 6: North St - Carrington Ave (PM) Peak - Existing

Site 6: North St - Carrington Ave (PM) Peak - Existing Giveway / Yield (Two-Way)

		ormance - V									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	North St -	veh/h southern leg	%	v/c	sec	_	veh	m	_	per veh	km/h
1	L2	8	0.0	0.018	5.7	LOS A	0.1	0.4	0.20	0.53	53.7
2	T1	13	0.0	0.018	5.1	LOSA	0.1	0.4	0.20	0.53	53.8
_											
3	R2	34	0.0	0.045	7.5	LOS A	0.1	1.0	0.41	0.66	51.9
Appro	ach	55	0.0	0.045	6.6	LOS A	0.1	1.0	0.33	0.61	52.6
East:	Carrington A	Ave - eastern le	eg								
4	L2	45	0.0	0.104	5.7	LOS A	0.4	3.0	0.16	0.31	55.0
5	T1	80	1.3	0.104	0.2	LOS A	0.4	3.0	0.16	0.31	56.4
6	R2	62	0.0	0.104	5.8	LOS A	0.4	3.0	0.16	0.31	54.7
Appro		187	0.6	0.104	3.4	NA	0.4	3.0	0.16	0.31	55.5
			0.0	0.104	0.4	11/3	0.4	0.0	0.10	0.01	00.0
North:		northern leg									
7	L2	116	0.0	0.076	5.8	LOS A	0.3	2.2	0.18	0.54	53.1
8	T1	44	0.0	0.062	5.2	LOS A	0.2	1.5	0.34	0.58	53.6
9	R2	17	0.0	0.062	6.7	LOS A	0.2	1.5	0.34	0.58	53.2
Appro	ach	177	0.0	0.076	5.7	LOS A	0.3	2.2	0.23	0.56	53.2
	0	A									
	0	Ave - western	•				. .				
10	L2	9	0.0	0.057	5.8	LOS A	0.1	0.6	0.07	0.11	57.1
11	T1	86	0.0	0.057	0.1	LOS A	0.1	0.6	0.07	0.11	58.7
12	R2	12	0.0	0.057	5.9	LOS A	0.1	0.6	0.07	0.11	56.8
Appro	ach	107	0.0	0.057	1.2	NA	0.1	0.6	0.07	0.11	58.3
All Vel	nicles	526	0.2	0.104	4.1	NA	0.4	3.0	0.18	0.38	54.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:44:38 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 6 - North St - Carrington Ave.sip6

▽ Site: Site 7: Oberon St - Un-named Rd - Ross St (AM) Peak - Existing

Site 7: Oberon St - Un-named Rd - Ross St (AM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment Per	formance - V	/ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11	D. OI	veh/h	%	v/c	sec		veh	m		per veh	km/h
		southern leg									
1	L2	52	2.0	0.067	5.9	LOS A	0.3	1.8	0.22	0.55	53.2
2	T1	22	0.0	0.067	5.1	LOS A	0.3	1.8	0.22	0.55	53.4
3	R2	11	0.0	0.067	6.6	LOS A	0.3	1.8	0.22	0.55	52.7
Appro	ach	84	1.3	0.067	5.7	LOS A	0.3	1.8	0.22	0.55	53.2
East:	Oberon St -	eastern leg									
4	L2	24	4.3	0.076	5.7	LOS A	0.1	0.8	0.06	0.15	56.6
5	T1	103	4.1	0.076	0.0	LOS A	0.1	0.8	0.06	0.15	58.3
6	R2	14	0.0	0.076	5.7	LOS A	0.1	0.8	0.06	0.15	56.2
Appro	ach	141	3.7	0.076	1.6	NA	0.1	0.8	0.06	0.15	57.8
North:	Un-named	Rd - northern	leg								
7	L2	11	0.0	0.023	5.7	LOS A	0.1	0.6	0.19	0.56	53.3
8	T1	6	0.0	0.023	5.0	LOS A	0.1	0.6	0.19	0.56	53.5
9	R2	8	0.0	0.023	6.8	LOS A	0.1	0.6	0.19	0.56	52.8
Appro	ach	25	0.0	0.023	5.9	LOS A	0.1	0.6	0.19	0.56	53.2
West:	Oberon St	- western leg									
10	L2	29	3.6	0.072	5.8	LOS A	0.2	1.6	0.13	0.24	55.6
11	T1	72	2.9	0.072	0.2	LOS A	0.2	1.6	0.13	0.24	57.3
12	R2	25	12.5	0.072	6.0	LOS A	0.2	1.6	0.13	0.24	54.6
Appro	ach	126	5.0	0.072	2.6	NA	0.2	1.6	0.13	0.24	56.3
All Vel	nicles	377	3.4	0.076	3.2	NA	0.3	1.8	0.13	0.30	55.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:49:24 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 7 - Oberon St - Un-named Rd - Ross St.sip6

V Site: Site 7: Oberon St - Un-named Rd - Ross St (PM) Peak - Existing

Site 7: Oberon St - Un-named Rd - Ross St (PM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment P <u>er</u> f	formance - V	ehicle <u>s</u>								
Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Osuth	Dees Of	veh/h	%	v/c	sec		veh	m		per veh	km/h
		southern leg						. –			
1	L2	59	1.8	0.064	5.9	LOS A	0.2	1.7	0.21	0.56	53.0
2	T1	5	0.0	0.064	5.7	LOS A	0.2	1.7	0.21	0.56	53.2
3	R2	15	0.0	0.064	7.2	LOS A	0.2	1.7	0.21	0.56	52.6
Appro	ach	79	1.3	0.064	6.1	LOS A	0.2	1.7	0.21	0.56	52.9
East:	Oberon St -	eastern leg									
4	L2	19	0.0	0.073	5.8	LOS A	0.1	0.7	0.07	0.12	57.0
5	T1	106	4.0	0.073	0.1	LOS A	0.1	0.7	0.07	0.12	58.5
6	R2	11	0.0	0.073	6.0	LOS A	0.1	0.7	0.07	0.12	56.4
Appro	ach	136	3.1	0.073	1.3	NA	0.1	0.7	0.07	0.12	58.1
North:	Un-named	Rd - northern	leg								
7	L2	14	0.0	0.054	6.0	LOS A	0.2	1.3	0.33	0.61	52.8
8	T1	12	0.0	0.054	5.6	LOS A	0.2	1.3	0.33	0.61	52.9
9	R2	24	0.0	0.054	7.5	LOS A	0.2	1.3	0.33	0.61	52.3
Appro	ach	49	0.0	0.054	6.6	LOS A	0.2	1.3	0.33	0.61	52.5
West:	Oberon St	- western leg									
10	L2	48	2.2	0.151	5.9	LOS A	0.6	4.0	0.17	0.24	55.5
11	T1	152	2.8	0.151	0.2	LOS A	0.6	4.0	0.17	0.24	57.0
12	R2	73	0.0	0.151	5.8	LOS A	0.6	4.0	0.17	0.24	55.0
Appro	ach	273	1.9	0.151	2.7	NA	0.6	4.0	0.17	0.24	56.2
All Vel	nicles	537	2.0	0.151	3.2	NA	0.6	4.0	0.16	0.29	55.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:49:25 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 7 - Oberon St - Un-named Rd - Ross St.sip6

igvee Site: Site 8: Albion St - Duckmaloi Rd (AM) Peak - Existing

Site 8: Albion St - Duckmaloi Rd (AM) Peak - Existing Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
E		veh/h	%	v/c	sec	_	veh	m	_	per veh	km/h
		d - eastern le	0								
5	T1	53	8.0	0.028	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	27	42.3	0.024	6.1	LOS A	0.1	0.9	0.10	0.57	51.0
Appro	ach	80	19.7	0.028	2.1	NA	0.1	0.9	0.03	0.19	56.6
North:	Albion St - r	orthern leg									
7	L2	16	60.0	0.023	6.4	LOS A	0.1	0.8	0.09	0.55	50.9
9	R2	6	16.7	0.023	6.4	LOS A	0.1	0.8	0.09	0.55	52.4
Approa	ach	22	47.6	0.023	6.4	LOS A	0.1	0.8	0.09	0.55	51.3
West:	Duckmaloi F	Rd - western	leg								
10	L2	3	0.0	0.002	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
11	T1	23	0.0	0.012	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	26	0.0	0.012	0.7	NA	0.0	0.0	0.00	0.07	59.2
All Vel	nicles	128	20.5	0.028	2.5	NA	0.1	0.9	0.04	0.23	56.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:52:11 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 8 - Albion St - Duckmaloi Rd.sip6

∇ Site: Site 8: Albion St - Duckmaloi Rd (PM) Peak - Existing

Site 8: Albion St - Duckmaloi Rd (PM) Peak - Existing Giveway / Yield (Two-Way)

Mover	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East E) u al ma a la i D	veh/h	%	v/c	sec		veh	m		per veh	km/h
East: L		d - eastern le	0								
5	T1	41	10.3	0.022	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	23	54.5	0.022	6.4	LOS A	0.1	0.9	0.16	0.56	50.3
Approa	ach	64	26.2	0.022	2.3	NA	0.1	0.9	0.06	0.20	56.1
North:	Albion St - r	northern leg									
7	L2	17	18.8	0.024	5.9	LOS A	0.1	0.7	0.14	0.55	52.4
9	R2	9	0.0	0.024	6.2	LOS A	0.1	0.7	0.14	0.55	53.0
Approa	ach	26	12.0	0.024	6.0	LOS A	0.1	0.7	0.14	0.55	52.6
West: I	Duckmaloi F	Rd - western I	leg								
10	L2	9	11.1	0.006	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	44	2.4	0.023	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ich	54	3.9	0.023	1.0	NA	0.0	0.0	0.00	0.10	58.7
All Veh	icles	144	15.3	0.024	2.5	NA	0.1	0.9	0.05	0.23	56.3

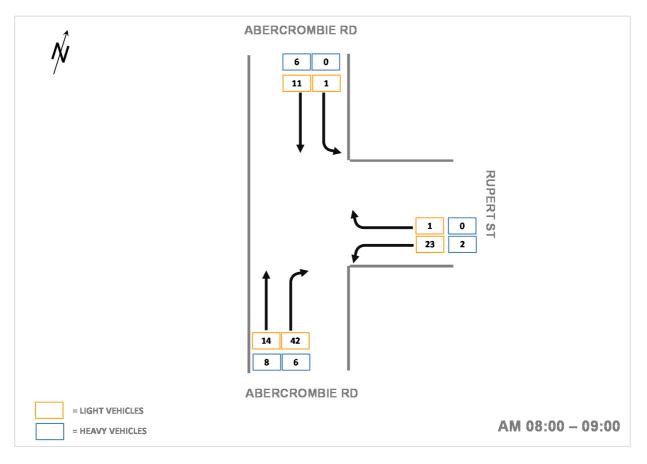
Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

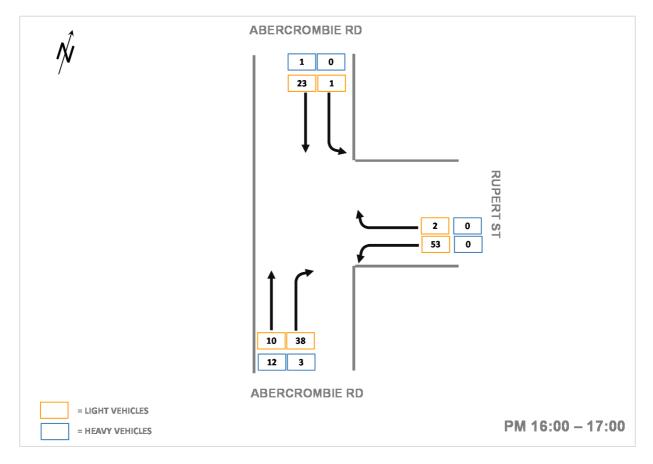
Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

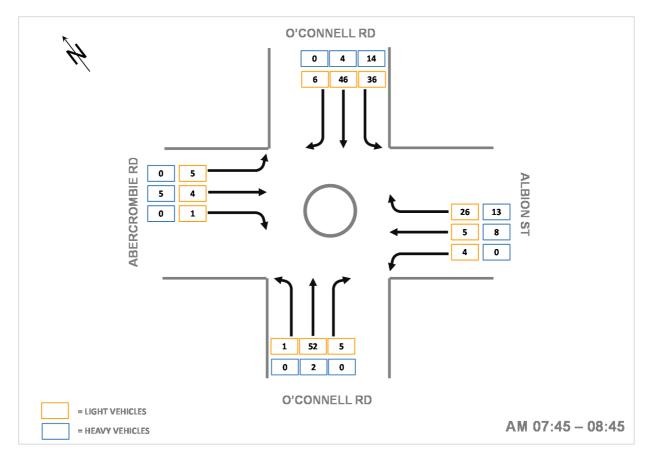
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

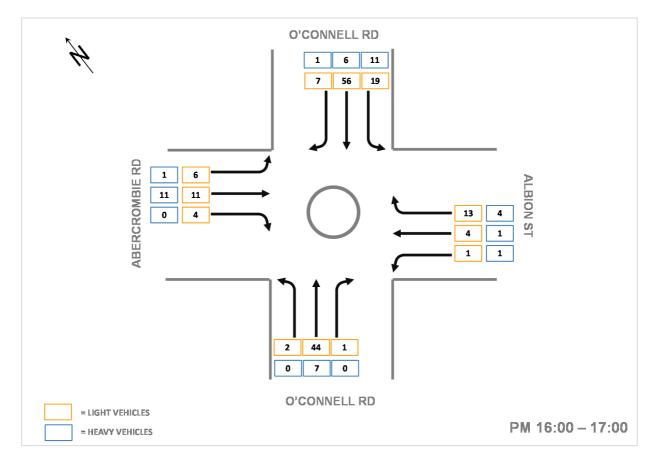

Gap-Acceptance Capacity: Traditional M1.

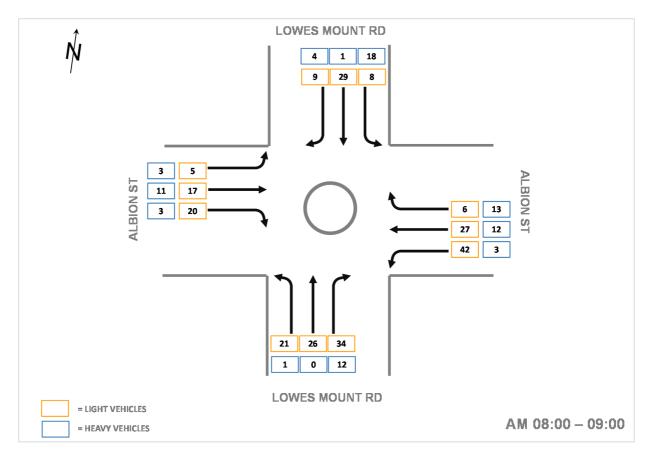
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

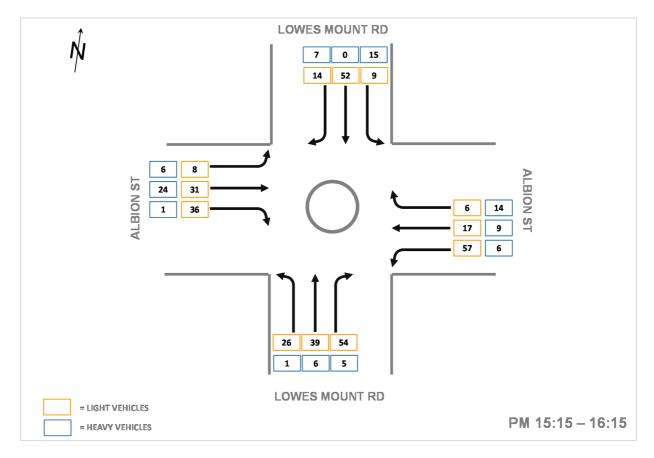

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:52:12 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 8 - Albion St - Duckmaloi Rd.sip6

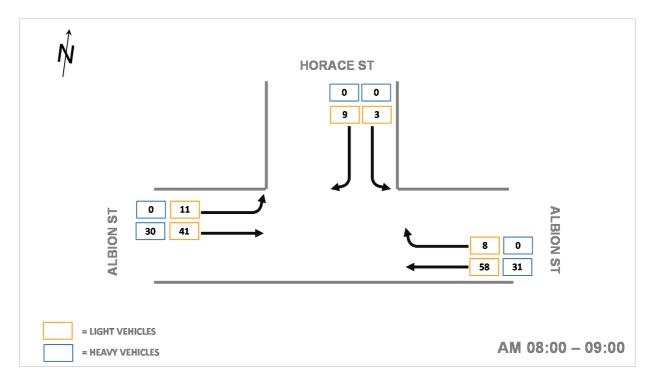
APPENDIX E: VEHICLE TURNING MOVEMENTS (OPERATIONAL CONDITIONS)

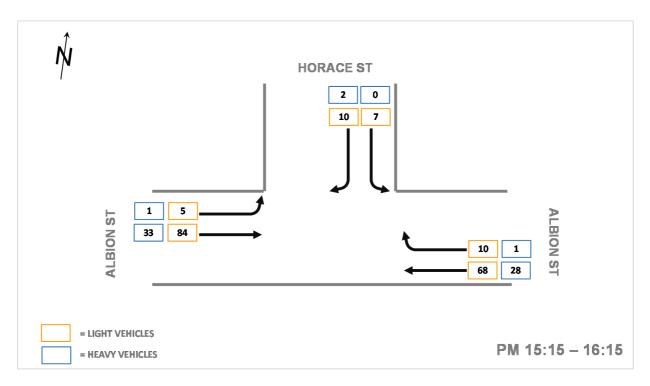

E.1: 2019 FORECAST YEAR E.2: 2029 FORECAST YEAR

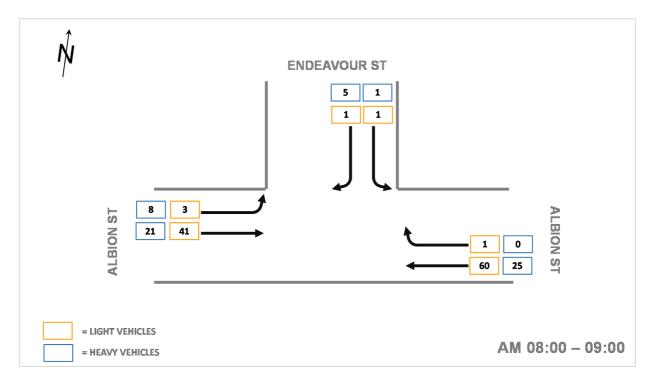

Site 1 – Abercrombie Road and Rupert Street, AM peak hour (Operational, 2019)

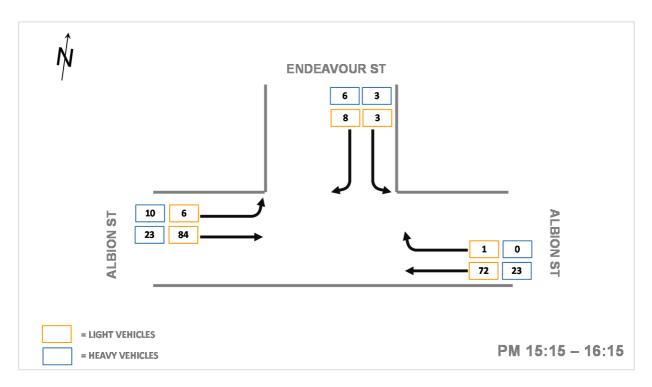

Site 1 – Abercrombie Road and Rupert Street, PM peak hour (Operational, 2019)

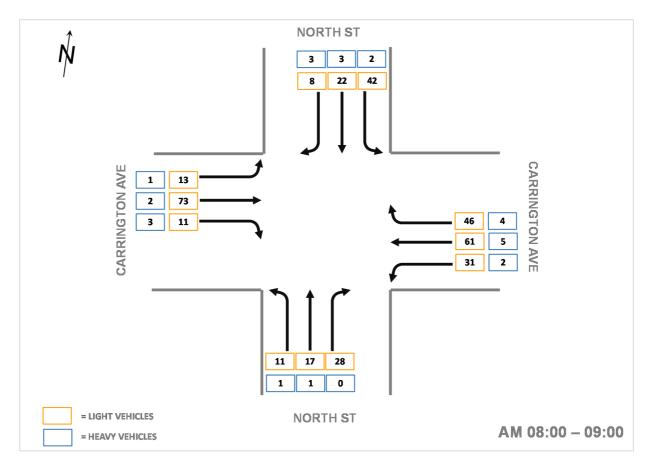

Site 2 – O'Connell Road and Albion Street, AM peak hour (Operational, 2019)

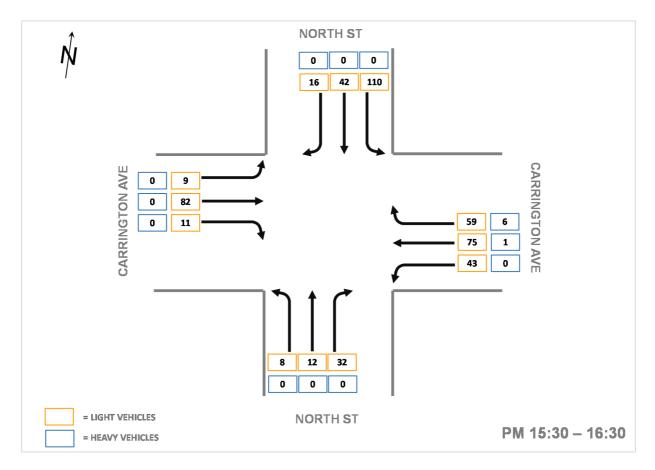

Site 2 – O'Connell Road and Albion Street, PM peak hour (Operational, 2019)

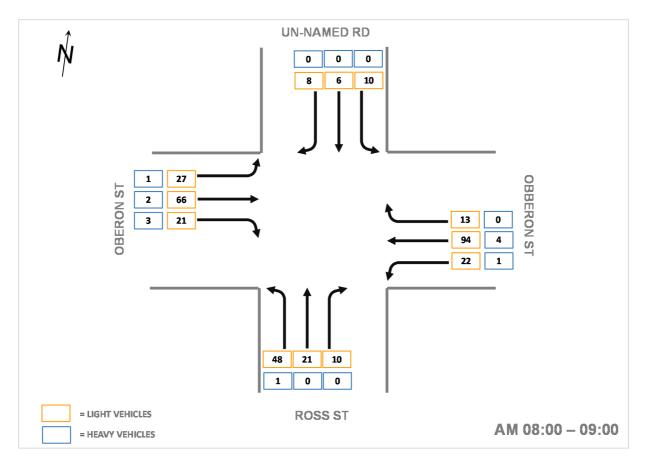

Site 3 – Lowes Mount Road and Albion Street, AM peak hour (Operational, 2019)

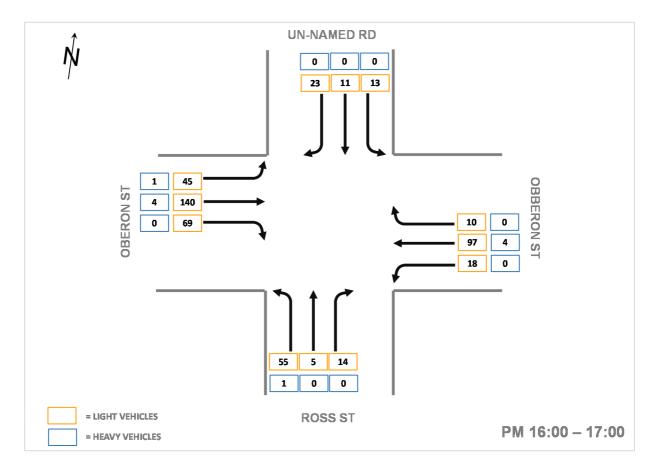

Site 3 – Lowes Mount Road and Albion Street, PM peak hour (Operational, 2019)

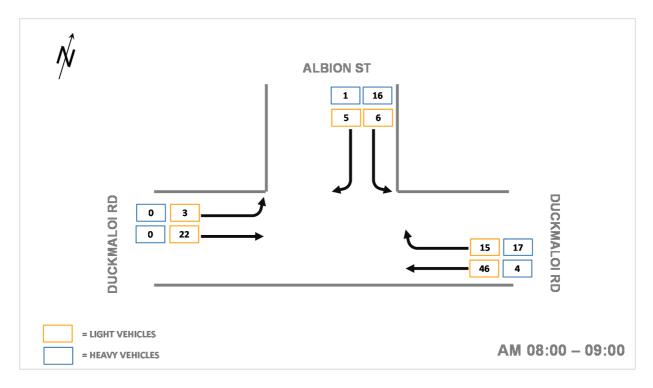

Site 4 – Albion Street and Horace Street, AM peak hour (Operational, 2019)

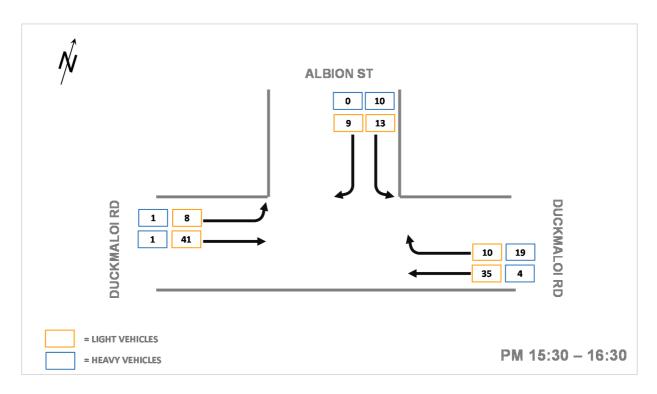

Site 4 – Albion Street and Horace Street, PM peak hour (Operational, 2019)

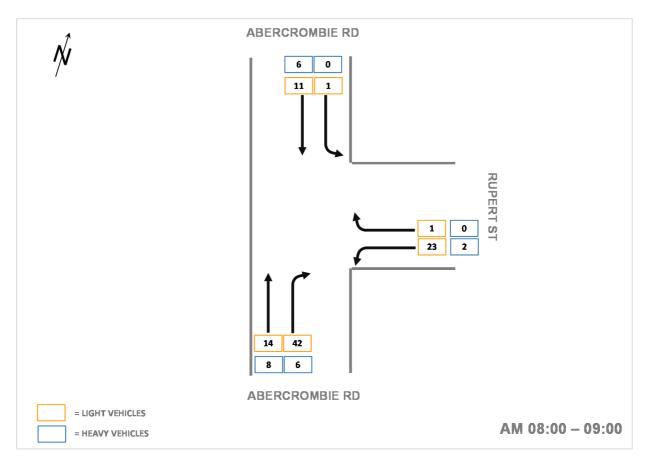

Site 5 – Albion Street and Endeavour Street, AM peak hour (Operational, 2019)

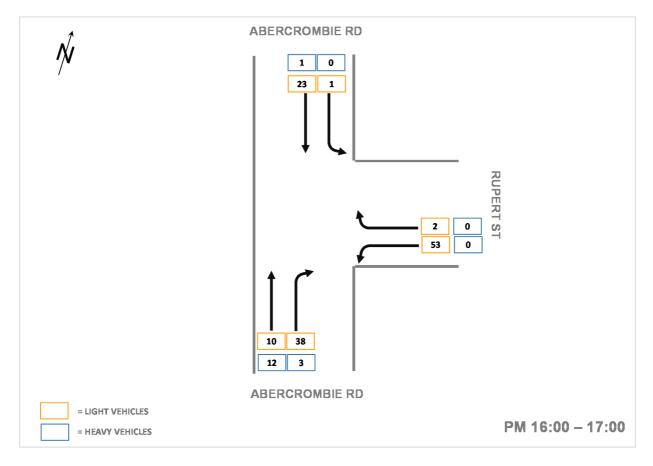

Site 5 – Albion Street and Endeavour Street, PM peak hour (Operational, 2019)

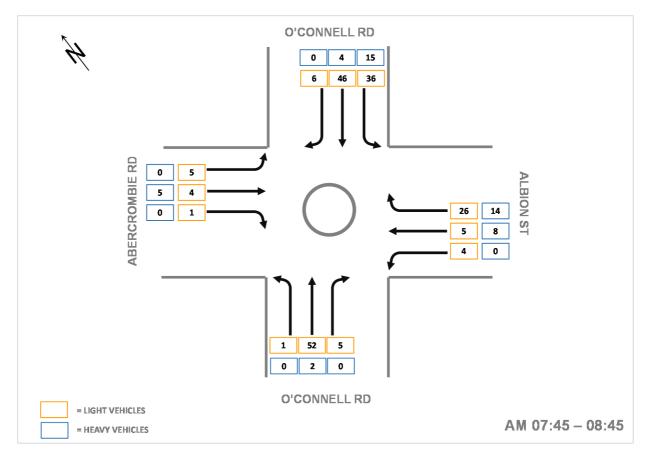

Site 6 – North Street and Carrington Avenue, AM peak hour (Operational, 2019)

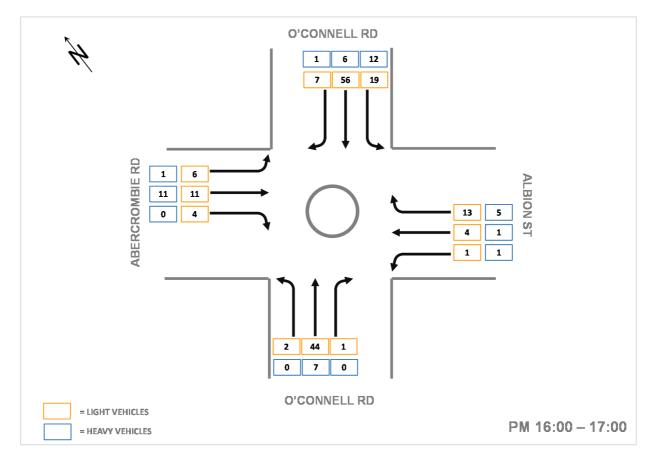

Site 6 – North Street and Carrington Avenue, PM peak hour (Operational, 2019)

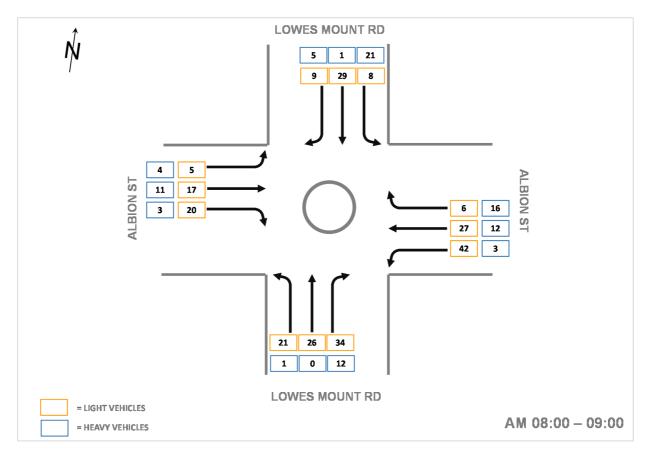

Site 7 – Oberon Street, Ross Street and unnamed road, AM peak hour (Operational, 2019)

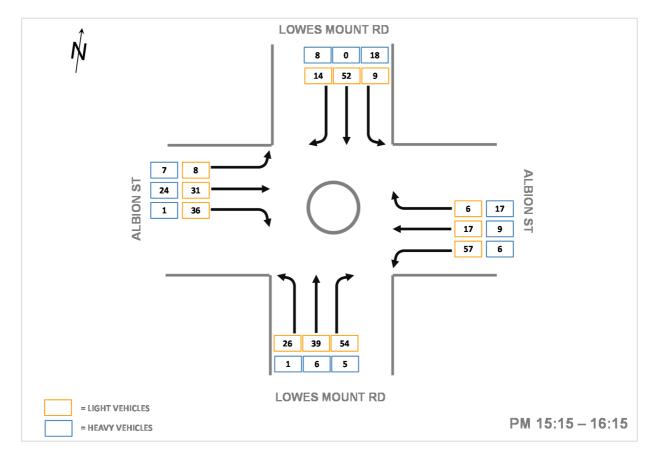

Site 7 – Oberon Street, Ross Street and unnamed road, PM peak hour (Operational, 2019)

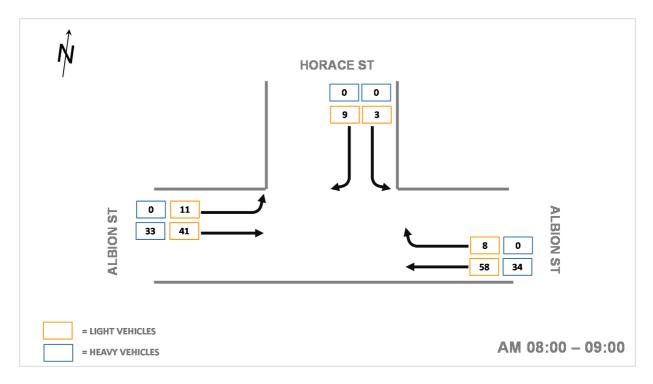

Site 8 – Duckmaloi Road and Albion Road, AM peak hour (Operational, 2019)

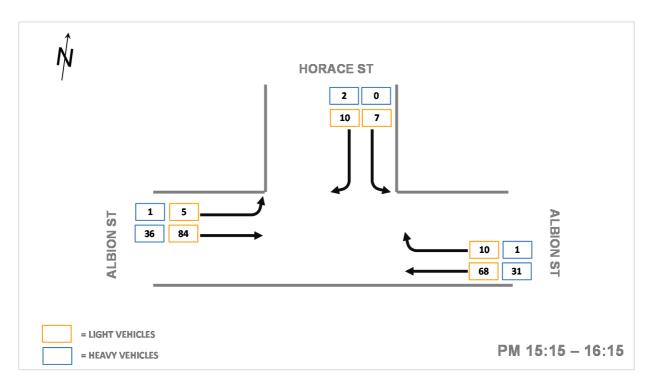

Site 8 – Duckmaloi Road and Albion Road, PM peak hour (Operational, 2019)

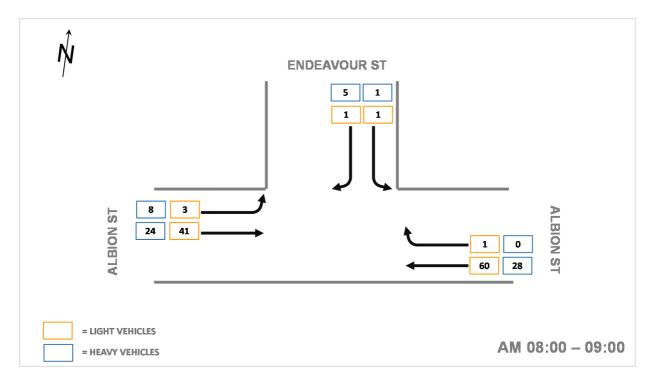

Site 1 – Abercrombie Road and Rupert Street, AM peak hour (Operational, 2029)

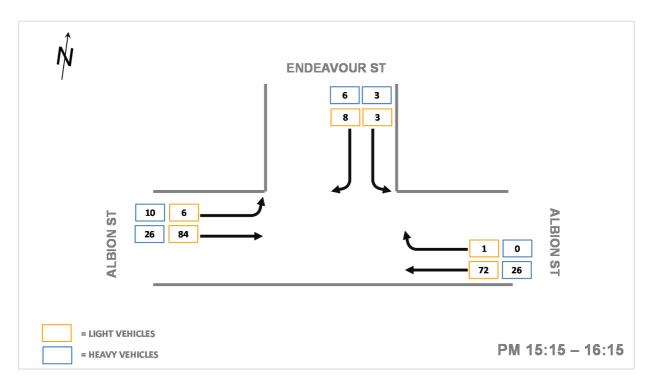

Site 1 – Abercrombie Road and Rupert Street, PM peak hour (Operational, 2029)

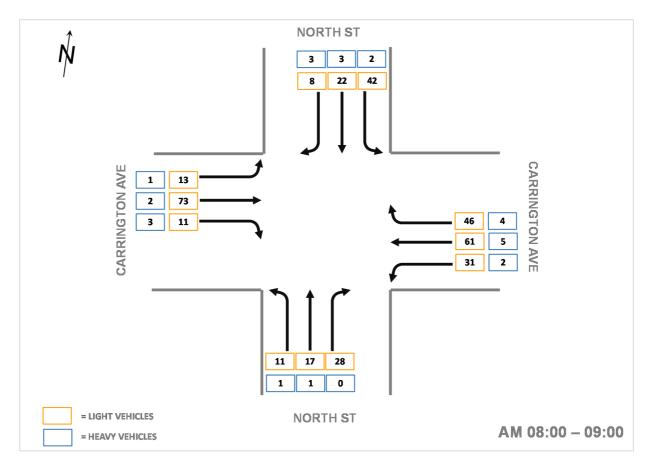

Site 2 – O'Connell Road and Albion Street, AM peak hour (Operational, 2029)

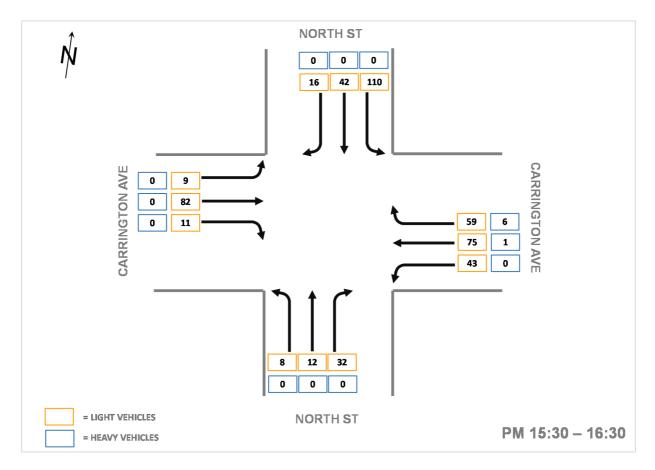

Site 2 – O'Connell Road and Albion Street, PM peak hour (Operational, 2029)

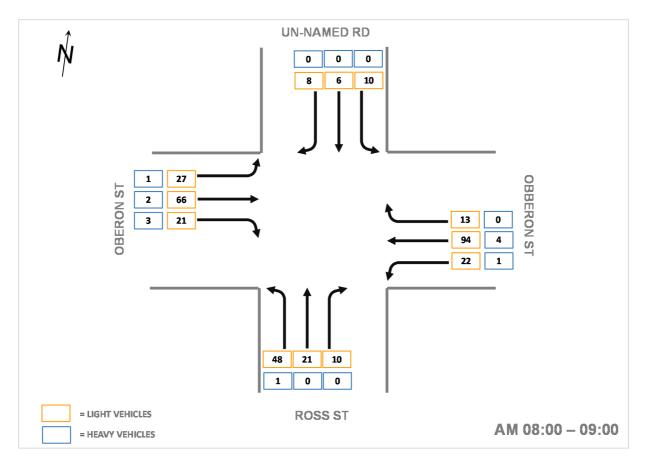

Site 3 – Lowes Mount Road and Albion Street, AM peak hour (Operational, 2029)

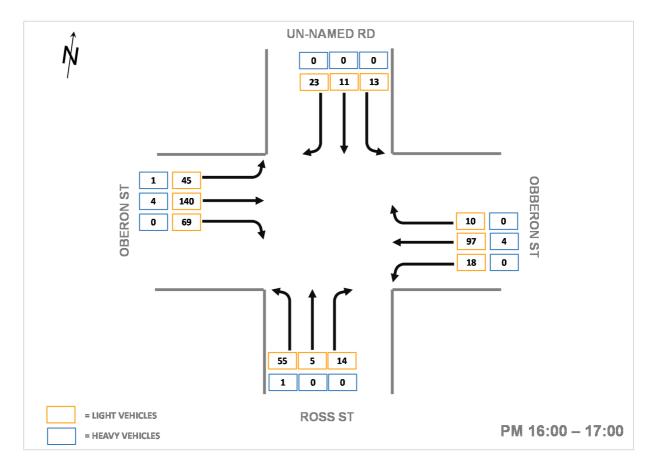

Site 3 – Lowes Mount Road and Albion Street, PM peak hour (Operational, 2029)

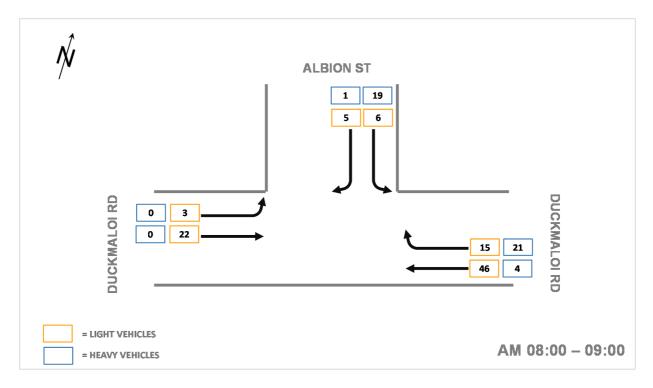

Site 4 – Albion Street and Horace Street, AM peak hour (Operational, 2029)

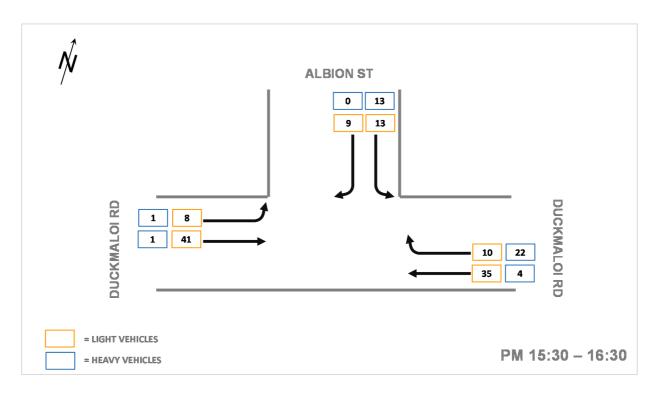

Site 4 – Albion Street and Horace Street, PM peak hour (Operational, 2029)


Site 5 – Albion Street and Endeavour Street, AM peak hour (Operational, 2029)


Site 5 – Albion Street and Endeavour Street, AM peak hour (Operational, 2029)


Site 6 – North Street and Carrington Avenue, AM peak hour (Operational, 2029)


Site 6 – North Street and Carrington Avenue, PM peak hour (Operational, 2029)


Site 7 – Oberon Street, Ross Street and unnamed road, AM peak hour (Operational, 2029)

Site 7 – Oberon Street, Ross Street and unnamed road, PM peak hour (Operational, 2029)

Site 8 – Duckmaloi Road and Albion Road, AM peak hour (Operational, 2029)

Site 8 – Duckmaloi Road and Albion Road, PM peak hour (Operational, 2029)

APPENDIX F: SIDRA INTERSECTION RESULTS (OPERATIONAL CONDITIONS)

F.1: 2019 FORECAST YEAR F.2: 2029 FORECAST YEAR

V Site: Site 1: Abercrombie Rd - Rupert St (AM) Peak - Operational (2019)

Site 1: Abercrombie Rd - Rupert St (AM) Peak - Operational (2019) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Abororombi	veh/h	%	v/c	sec		veh	m		per veh	km/h
		ie Rd - southe	0								
2	T1	23	36.4	0.040	0.0	LOS A	0.2	1.3	0.01	0.09	59.1
3	R2	51	12.5	0.040	5.7	LOS A	0.2	1.3	0.09	0.53	52.6
Approa	ach	74	20.0	0.040	3.9	NA	0.2	1.3	0.06	0.39	54.5
East: F	Rupert St - e	astern leg									
4	L2	26	8.0	0.022	5.7	LOS A	0.1	0.6	0.07	0.55	53.1
6	R2	1	0.0	0.022	6.1	LOS A	0.1	0.6	0.07	0.55	53.2
Approa	ach	27	7.7	0.022	5.7	LOS A	0.1	0.6	0.07	0.55	53.1
North:	Abercrombi	e Rd - northe	rn leg								
7	L2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
8	T1	18	35.3	0.011	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	19	33.3	0.011	0.3	NA	0.0	0.0	0.00	0.03	59.6
All Veh	nicles	120	19.3	0.040	3.7	NA	0.2	1.3	0.06	0.37	54.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 3:55:48 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 1 - Abercrombie Rd - Rupert St.sip6

V Site: Site 1: Abercrombie Rd - Rupert St (PM) Peak - Operational (2019)

Site 1: Abercrombie Rd - Rupert St (AM) Peak - Operational (2019) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Ocutho	A la a na na na la i	veh/h	%	v/c	sec		veh	m		per veh	km/h
		e Rd - southe	0								
2	T1	23	54.5	0.036	0.0	LOS A	0.1	1.2	0.03	0.16	58.3
3	R2	43	7.3	0.036	5.6	LOS A	0.1	1.2	0.09	0.49	52.9
Approa	ach	66	23.8	0.036	3.7	NA	0.1	1.2	0.07	0.37	54.7
East: F	Rupert St - e	astern leg									
4	L2	56	0.0	0.045	5.6	LOS A	0.2	1.1	0.08	0.55	53.4
6	R2	2	0.0	0.045	6.1	LOS A	0.2	1.1	0.08	0.55	53.1
Appro	ach	58	0.0	0.045	5.6	LOS A	0.2	1.1	0.08	0.55	53.3
North:	Abercrombie	e Rd - northe	rn leg								
7	L2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
8	T1	25	4.2	0.013	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	26	4.0	0.013	0.2	NA	0.0	0.0	0.00	0.02	59.7
All Vel	nicles	151	11.2	0.045	3.8	NA	0.2	1.2	0.06	0.38	55.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 3:55:49 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 1 - Abercrombie Rd - Rupert St.sip6

Site: Site 2: O'Connell Rd - Abercrombie Rd - Albion St (AM) Peak - Operational (2019)

Site 2: O'Connell Rd - Abercrombie Rd - Albion St (AM) Peak - Operational (2019) Roundabout

		formance - \									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	O'Connell	Rd - southern		V/C	SEC	_	ven		_	perven	K11/1
1	L2	1	0.0	0.050	4.2	LOS A	0.2	1.7	0.20	0.43	54.3
2	T1	57	3.7	0.050	4.4	LOS A	0.2	1.7	0.20	0.43	55.5
3	R2	5	0.0	0.050	9.0	LOS A	0.2	1.7	0.20	0.43	55.6
Appro	ach	63	3.3	0.050	4.8	LOS A	0.2	1.7	0.20	0.43	55.5
East: /	Albion St - e	eastern leg									
4	L2	4	0.0	0.054	4.1	LOS A	0.2	2.3	0.20	0.55	52.3
5	T1	14	61.5	0.054	5.0	LOS A	0.2	2.3	0.20	0.55	52.2
6	R2	41	33.3	0.054	9.4	LOS A	0.2	2.3	0.20	0.55	52.2
Appro	ach	59	37.5	0.054	8.0	LOS A	0.2	2.3	0.20	0.55	52.2
North:	O'Connell	Rd - northern	leg								
7	L2	53	28.0	0.081	4.2	LOS A	0.4	3.2	0.10	0.44	54.1
8	T1	53	8.0	0.081	4.2	LOS A	0.4	3.2	0.10	0.44	56.1
9	R2	6	0.0	0.081	8.8	LOS A	0.4	3.2	0.10	0.44	56.3
Appro	ach	112	17.0	0.081	4.5	LOS A	0.4	3.2	0.10	0.44	55.1
West:	Abercromb	ie Rd - wester	n leg								
10	L2	5	0.0	0.015	4.3	LOS A	0.1	0.6	0.26	0.44	54.2
11	T1	9	55.6	0.015	5.3	LOS A	0.1	0.6	0.26	0.44	54.2
12	R2	1	0.0	0.015	9.1	LOS A	0.1	0.6	0.26	0.44	55.5
Appro	ach	16	33.3	0.015	5.2	LOS A	0.1	0.6	0.26	0.44	54.3
All Vel	nicles	249	19.4	0.081	5.5	LOS A	0.4	3.2	0.16	0.46	54.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:09:55 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 2 - O'Connell Rd - Abercrombie Rd - Albion St.sip6

Site: Site 2: O'Connell Rd - Abercrombie Rd - Albion St (PM) Peak - Operational (2019)

Site 2: O'Connell Rd - Abercrombie Rd - Albion St (PM) Peak - Operational (2019) Roundabout

		·									
		formance - \		D				- 1 0	Dura	F # 1	A
Mov ID	OD Mov	Demano Total	Hows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
U	IVIOV	veh/h	пv %	V/C	Sec	Service	venicies veh	m	Queueu	per veh	speed km/h
South	O'Connell	Rd - southern									
1	L2	2	0.0	0.044	4.0	LOS A	0.2	1.6	0.14	0.40	54.8
2	T1	54	13.7	0.044	4.4	LOS A	0.2	1.6	0.14	0.40	55.8
3	R2	1	0.0	0.044	8.9	LOS A	0.2	1.6	0.14	0.40	56.1
Appro	ach	57	13.0	0.044	4.4	LOS A	0.2	1.6	0.14	0.40	55.8
East: /	Albion St - e	eastern leg									
4	L2	2	50.0	0.022	4.9	LOS A	0.1	0.8	0.22	0.56	50.9
5	T1	5	20.0	0.022	4.6	LOS A	0.1	0.8	0.22	0.56	53.1
6	R2	18	23.5	0.022	9.4	LOS A	0.1	0.8	0.22	0.56	52.6
Appro	ach	25	25.0	0.022	8.0	LOS A	0.1	0.8	0.22	0.56	52.5
North:	O'Connell	Rd - northern	leg								
7	L2	32	36.7	0.081	4.4	LOS A	0.4	3.2	0.14	0.43	53.5
8	T1	65	9.7	0.081	4.3	LOS A	0.4	3.2	0.14	0.43	55.8
9	R2	8	12.5	0.081	9.0	LOS A	0.4	3.2	0.14	0.43	55.4
Appro	ach	105	18.0	0.081	4.7	LOS A	0.4	3.2	0.14	0.43	55.0
West:	Abercromb	ie Rd - wester	n leg								
10	L2	7	14.3	0.032	4.4	LOS A	0.1	1.3	0.22	0.45	53.6
11	T1	23	50.0	0.032	5.0	LOS A	0.1	1.3	0.22	0.45	54.1
12	R2	4	0.0	0.032	9.0	LOS A	0.1	1.3	0.22	0.45	55.3
Appro	ach	35	36.4	0.032	5.3	LOS A	0.1	1.3	0.22	0.45	54.1
All Vel	nicles	222	20.4	0.081	5.1	LOS A	0.4	3.2	0.16	0.44	54.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:09:56 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 2 - O'Connell Rd - Abercrombie Rd - Albion St.sip6

V Site: Site 3: Lowes Mount Rd - Albion St - North St (AM) Peak - Operational (2019)

Site 3: Lowes Mount Rd - Albion St - North St (AM) Peak - Operational (2019) Roundabout

		ormance - \						()			
Mov ID	OD Mov	Demano Total	Hows HV	Deg. Satn	Average	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Data	Average
	IVIOV	veh/h	⊓v %	v/c	Delay sec	Service	venicies veh	m	Queueu	Stop Rate per veh	Speed km/h
South:	North St - s	southern leg	,,,				1011				
1	L2	23	4.5	0.083	4.3	LOS A	0.4	3.1	0.24	0.54	53.1
2	T1	27	0.0	0.083	4.5	LOS A	0.4	3.1	0.24	0.54	54.5
3	R2	48	26.1	0.083	9.5	LOS A	0.4	3.1	0.24	0.54	53.4
Approa	ach	99	13.8	0.083	6.9	LOS A	0.4	3.1	0.24	0.54	53.6
East: A	Albion St - e	astern leg									
4	L2	47	6.7	0.094	4.3	LOS A	0.5	3.9	0.23	0.47	54.2
5	T1	41	30.8	0.094	4.8	LOS A	0.5	3.9	0.23	0.47	55.0
6	R2	20	68.4	0.094	10.0	LOS A	0.5	3.9	0.23	0.47	52.9
Approa	ach	108	27.2	0.094	5.5	LOS A	0.5	3.9	0.23	0.47	54.3
North:	Lowes Mou	ınt Rd - north	ern leg								
7	L2	27	69.2	0.070	5.4	LOS A	0.3	2.9	0.29	0.49	51.7
8	T1	32	3.3	0.070	4.6	LOS A	0.3	2.9	0.29	0.49	54.9
9	R2	14	30.8	0.070	9.7	LOS A	0.3	2.9	0.29	0.49	53.7
Appro	ach	73	33.3	0.070	5.9	LOS A	0.3	2.9	0.29	0.49	53.4
West:	Albion St - v	vestern leg									
10	L2	8	37.5	0.058	4.9	LOS A	0.3	2.3	0.27	0.52	51.8
11	T1	29	39.3	0.058	5.1	LOS A	0.3	2.3	0.27	0.52	53.3
12	R2	24	13.0	0.058	9.4	LOS A	0.3	2.3	0.27	0.52	53.6
Approa	ach	62	28.8	0.058	6.7	LOS A	0.3	2.3	0.27	0.52	53.2
All Vel	nicles	342	24.9	0.094	6.2	LOS A	0.5	3.9	0.25	0.50	53.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:21:12 PM

Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 3 - Lowes Mount Rd - Albion St - North St.sip6

₩ Site: Site 3: Lowes Mount Rd - Albion St - North St (PM) Peak - Operational (2019)

Site 3: Lowes Mount Rd - Albion St -North St (PM) Peak - Operational (2019) Roundabout

		ormance - \									
Mov	OD	Demano		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South:	North St -	southern leg	/0	v/C	360		VEIT	111			KI11/11
1	L2	28	3.7	0.111	4.3	LOS A	0.6	4.2	0.24	0.53	53.0
2	T1	47	13.3	0.111	4.6	LOS A	0.6	4.2	0.24	0.53	54.1
3	R2	62	8.5	0.111	9.2	LOS A	0.6	4.2	0.24	0.53	54.0
Appro	ach	138	9.2	0.111	6.6	LOS A	0.6	4.2	0.24	0.53	53.8
East: A	Albion St - e	astern leg									
4	L2	66	9.5	0.107	4.5	LOS A	0.5	4.5	0.30	0.51	53.9
5	T1	27	34.6	0.107	5.1	LOS A	0.5	4.5	0.30	0.51	54.7
6	R2	21	70.0	0.107	10.5	LOS A	0.5	4.5	0.30	0.51	52.7
Appro	ach	115	26.6	0.107	5.8	LOS A	0.5	4.5	0.30	0.51	53.9
North:	Lowes Mou	unt Rd - north	ern leg								
7	L2	25	62.5	0.100	5.8	LOS A	0.5	3.9	0.36	0.53	51.6
8	T1	55	0.0	0.100	4.9	LOS A	0.5	3.9	0.36	0.53	54.7
9	R2	22	33.3	0.100	10.1	LOS A	0.5	3.9	0.36	0.53	53.3
Approa	ach	102	22.7	0.100	6.2	LOS A	0.5	3.9	0.36	0.53	53.6
West:	Albion St - v	western leg									
10	L2	15	42.9	0.109	5.2	LOS A	0.5	4.5	0.33	0.54	51.5
11	T1	58	43.6	0.109	5.4	LOS A	0.5	4.5	0.33	0.54	53.0
12	R2	39	2.7	0.109	9.4	LOS A	0.5	4.5	0.33	0.54	53.8
Appro	ach	112	29.2	0.109	6.8	LOS A	0.5	4.5	0.33	0.54	53.1
All Vel	nicles	466	21.2	0.111	6.4	LOS A	0.6	4.5	0.30	0.53	53.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:21:14 PM

Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 3 - Lowes Mount Rd - Albion St - North St.sip6

V Site: Site 4: Horace St - Albion St (AM) Peak - Operational (2019)

Site 4: Horace St - Albion St (AM) Peak - Operational (2019) Giveway / Yield (Two-Way)

ID N	OD Dema Nov Total veh/h n St - western leo	and Flows HV %	Deg. Satn	Average	Level of	050/ Doole	10	_		
	veh/h		Satn		2010101	93% Back	of Queue	Prop.	Effective	Average
East Albia		<u> </u>		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
			v/c	sec	_	veh	m		per veh	km/h
	Ŭ									
5	T1 94	34.8	0.063	0.0	LOS A	0.1	0.5	0.04	0.05	59.2
6	R2 8	0.0	0.063	5.7	LOS A	0.1	0.5	0.04	0.05	57.0
Approach	102	32.0	0.063	0.5	NA	0.1	0.5	0.04	0.05	59.0
North: Hor	ace St - northern	eg								
7	L2 3	0.0	0.011	5.8	LOS A	0.0	0.2	0.21	0.56	53.0
9	R2 9	0.0	0.011	6.1	LOS A	0.0	0.2	0.21	0.56	52.5
Approach	13	0.0	0.011	6.0	LOS A	0.0	0.2	0.21	0.56	52.7
West: Albio	on St - western leg	1								
10	L2 12	0.0	0.055	5.5	LOS A	0.0	0.0	0.00	0.08	57.3
11	T1 75	42.3	0.055	0.0	LOS A	0.0	0.0	0.00	0.08	58.9
Approach	86	36.6	0.055	0.7	NA	0.0	0.0	0.00	0.08	58.6
All Vehicle	s 201	31.9	0.063	0.9	NA	0.1	0.5	0.03	0.10	58.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:29:58 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 4 - Horace St - Albion St.sip6

V Site: Site 4: Horace St - Albion St (PM) Peak - Operational (2019)

Site 4: Horace St - Albion St (PM) Peak - Operational (2019) Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - \	/ehicles								
Mov	OD	Demano		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Factor		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Albion St - w	0									
5	T1	101	29.2	0.069	0.1	LOS A	0.1	0.7	0.06	0.06	59.1
6	R2	12	9.1	0.069	6.0	LOS A	0.1	0.7	0.06	0.06	56.4
Appro	ach	113	27.1	0.069	0.7	NA	0.1	0.7	0.06	0.06	58.8
North:	Horace St -	northern leg									
7	L2	7	0.0	0.019	5.9	LOS A	0.1	0.5	0.26	0.57	52.9
9	R2	13	16.7	0.019	6.6	LOS A	0.1	0.5	0.26	0.57	51.6
Appro	ach	20	10.5	0.019	6.4	LOS A	0.1	0.5	0.26	0.57	52.1
West:	Albion St - v	vestern leg									
10	L2	6	16.7	0.079	5.7	LOS A	0.0	0.0	0.00	0.03	57.2
11	T1	123	28.2	0.079	0.0	LOS A	0.0	0.0	0.00	0.03	59.7
Appro	ach	129	27.6	0.079	0.3	NA	0.0	0.0	0.00	0.03	59.6
All Vel	hicles	262	26.1	0.079	0.9	NA	0.1	0.7	0.05	0.08	58.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:29:59 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 4 - Horace St - Albion St.sip6

V Site: Site 5: Endeavour St - Albion St (AM) Peak - Operational (2019)

Site 5: Endeavour St - Albion St (AM) Peak - Operational (2019) Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - '	Vehicles								
Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
=		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: A	Albion St - ea	astern leg									
5	T1	89	29.4	0.056	0.0	LOS A	0.0	0.1	0.01	0.01	59.9
6	R2	1	100.0	0.056	6.6	LOS A	0.0	0.1	0.01	0.01	55.0
Appro	ach	91	30.2	0.056	0.2	NA	0.0	0.1	0.01	0.01	59.8
North:	Endeavour	St - northerr	n leg								
7	L2	2	50.0	0.010	6.4	LOS A	0.0	0.4	0.23	0.56	50.9
9	R2	6	83.3	0.010	7.6	LOS A	0.0	0.4	0.23	0.56	48.9
Appro	ach	8	75.0	0.010	7.3	LOS A	0.0	0.4	0.23	0.56	49.4
West:	Albion St - v	vestern leg									
10	L2	12	72.7	0.050	6.4	LOS A	0.0	0.0	0.00	0.09	54.5
11	T1	65	33.9	0.050	0.0	LOS A	0.0	0.0	0.00	0.09	59.6
Appro	ach	77	39.7	0.050	1.0	NA	0.0	0.0	0.00	0.09	58.8
All Vel	nicles	176	36.5	0.056	0.8	NA	0.0	0.4	0.02	0.07	58.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:40:17 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 5 - Endeavour St - Albion St.sip6

V Site: Site 5: Endeavour St - Albion St (PM) Peak - Operational (2019)

Site 5: Endeavour St - Albion St (PM) Peak - Operational (2019) Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - \	/ehicles								
Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East: (veh/h	%	v/c	sec		veh	m		per veh	km/h
East: A	Albion St - ea	0									
5	T1	100	24.2	0.060	0.0	LOS A	0.0	0.1	0.01	0.01	59.9
6	R2	1	0.0	0.060	5.9	LOS A	0.0	0.1	0.01	0.01	57.6
Approa	ach	101	24.0	0.060	0.1	NA	0.0	0.1	0.01	0.01	59.9
North:	Endeavour	St - northern	leg								
7	L2	6	50.0	0.023	6.6	LOS A	0.1	0.8	0.27	0.58	50.8
9	R2	15	42.9	0.023	7.1	LOS A	0.1	0.8	0.27	0.58	50.5
Approa	ach	21	45.0	0.023	7.0	LOS A	0.1	0.8	0.27	0.58	50.6
West:	Albion St - v	vestern leg									
10	L2	17	62.5	0.079	6.3	LOS A	0.0	0.0	0.00	0.07	55.0
11	T1	113	21.5	0.079	0.0	LOS A	0.0	0.0	0.00	0.07	59.6
Approa	ach	129	26.8	0.079	0.8	NA	0.0	0.0	0.00	0.07	59.0
All Ver	nicles	252	27.2	0.079	1.0	NA	0.1	0.8	0.03	0.09	58.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:40:17 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 5 - Endeavour St - Albion St.sip6

igvee Site: Site 6: North St - Carrington Ave (AM) Peak - Operational (2019)

Site 6: North St - Carrington Ave (AM) Peak - Operational (2019) Giveway / Yield (Two-Way)

2 T1 19 5.6 0.027 5.1 LOS A 0.1 0.7 0.19 0.54 3 R2 29 0.0 0.035 6.9 LOS A 0.1 0.8 0.35 0.62 Approach 61 3.4 0.035 6.1 LOS A 0.1 0.8 0.27 0.58 East: Carrington Ave - eastern leg												
ID Mov Total veh/h HV % Satn v/c Delay sec Service Vehicles veh Distance m Queued per veh Stop Rate per veh South: North St - southern leg 1 L2 13 8.3 0.027 5.8 LOS A 0.1 0.7 0.19 0.54 2 T1 19 5.6 0.027 5.1 LOS A 0.1 0.7 0.19 0.54 3 R2 29 0.0 0.035 6.9 LOS A 0.1 0.8 0.35 0.62 Approach 61 3.4 0.035 6.1 LOS A 0.1 0.8 0.27 0.58 East: Carrington Ave - eastern leg												
veh/h % v/c sec veh m per veh 1 L2 13 8.3 0.027 5.8 LOS A 0.1 0.7 0.19 0.54 2 T1 19 5.6 0.027 5.1 LOS A 0.1 0.7 0.19 0.54 3 R2 29 0.0 0.035 6.9 LOS A 0.1 0.8 0.35 0.62 Approach 61 3.4 0.035 6.1 LOS A 0.1 0.8 0.27 0.58 East: Carrington Ave - eastern leg 0.91 5.8 LOS A 0.4 2.7 0.16 0.30 5 T1 69 7.6 0.091 0.2 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157	Average											
South: North St - southern leg 1 L2 13 8.3 0.027 5.8 LOS A 0.1 0.7 0.19 0.54 2 T1 19 5.6 0.027 5.1 LOS A 0.1 0.7 0.19 0.54 3 R2 29 0.0 0.035 6.9 LOS A 0.1 0.8 0.35 0.62 Approach 61 3.4 0.035 6.1 LOS A 0.1 0.8 0.27 0.58 East: Carrington Ave - eastern leg - - - - 0.091 5.8 LOS A 0.4 2.7 0.16 0.30 5 T1 69 7.6 0.091 0.2 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4	Speed km/h		Queuea			Service					IVIOV	U
1 L2 13 8.3 0.027 5.8 LOS A 0.1 0.7 0.19 0.54 2 T1 19 5.6 0.027 5.1 LOS A 0.1 0.7 0.19 0.54 3 R2 29 0.0 0.035 6.9 LOS A 0.1 0.8 0.35 0.62 Approach 61 3.4 0.035 6.1 LOS A 0.1 0.8 0.27 0.58 East: Carrington Ave - eastern leg 0.91 5.8 LOS A 0.4 2.7 0.16 0.30 5 T1 69 7.6 0.091 0.2 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 3.3 NA 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7	N11/11	per ven			VCII		360	V/C	/0		North St - so	South
3 R2 29 0.0 0.035 6.9 LOS A 0.1 0.8 0.35 0.62 Approach 61 3.4 0.035 6.1 LOS A 0.1 0.8 0.27 0.58 East: Carrington Ave - eastern leg 4 L2 35 6.1 0.091 5.8 LOS A 0.4 2.7 0.16 0.30 5 T1 69 7.6 0.091 0.2 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 9 R2 12.0 0.042 5.3 LOS A 0.1 1.2 0.34	53.3	0.54	0.19	0.7	0.1	LOS A	5.8	0.027	8.3			
Approach 61 3.4 0.035 6.1 LOS A 0.1 0.8 0.27 0.58 East: Carrington Ave - eastern leg 4 L2 35 6.1 0.091 5.8 LOS A 0.4 2.7 0.16 0.30 5 T1 69 7.6 0.091 0.2 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 North: North St - northern leg 7 L2 46 4.5 0.031 5.8 LOS A 0.1 0.9 0.17 0.54 8 T1 26 12.0 0.042 5.3 LOS A 0.1 1.2 0.34	53.7	0.54	0.19	0.7	0.1	LOS A	5.1	0.027	5.6	19	T1	2
East: Carrington Ave - eastern leg 4 L2 35 6.1 0.091 5.8 LOS A 0.4 2.7 0.16 0.30 5 T1 69 7.6 0.091 0.2 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 North: North St - northern leg 7 L2 46 4.5 0.031 5.8 LOS A 0.1 0.9 0.17 0.54 8 T1 26 12.0 0.042 5.3 LOS A 0.1 1.2 0.34 0.58 9 R2 12 27.3 0.042 7.3 LOS A 0.1 1.2 0.34 0.58 Approach 84 10.0 0.042 5.9 LOS A 0.1 1.2 0.24 0.56 West: Carrington Ave - western leg USA	52.3	0.62	0.35	0.8	0.1	LOS A	6.9	0.035	0.0	29	R2	3
4 L2 35 6.1 0.091 5.8 LOS A 0.4 2.7 0.16 0.30 5 T1 69 7.6 0.091 0.2 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 North: North St - northern leg 7 L2 46 4.5 0.031 5.8 LOS A 0.1 0.9 0.17 0.54 8 T1 26 12.0 0.042 5.3 LOS A 0.1 1.2 0.34 0.58 9 R2 12 27.3 0.042 7.3 LOS A 0.1 1.2 0.24 0.56 West: Carrington Ave - western leg Vest: Carrington Ave - western leg Vest: Carrington Ave - western leg	52.9	0.58	0.27	0.8	0.1	LOS A	6.1	0.035	3.4	61	ach	Appro
5 T1 69 7.6 0.091 0.2 LOS A 0.4 2.7 0.16 0.30 6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 North: North St - northern leg 7 L2 46 4.5 0.031 5.8 LOS A 0.1 0.9 0.17 0.54 8 T1 26 12.0 0.042 5.3 LOS A 0.1 1.2 0.34 0.58 9 R2 12 27.3 0.042 7.3 LOS A 0.1 1.2 0.34 0.58 Approach 84 10.0 0.042 5.9 LOS A 0.1 1.2 0.24 0.56 West: Carrington Ave - western leg Vest: Carrington Ave - western leg									leg	e - eastern	Carrington Av	East: (
6 R2 53 8.0 0.091 5.9 LOS A 0.4 2.7 0.16 0.30 Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 North: North St - northern leg 7 L2 46 4.5 0.031 5.8 LOS A 0.1 0.9 0.17 0.54 8 T1 26 12.0 0.042 5.3 LOS A 0.1 1.2 0.34 0.58 9 R2 12 27.3 0.042 7.3 LOS A 0.1 1.2 0.34 0.58 9 R2 12 27.3 0.042 7.3 LOS A 0.1 1.2 0.34 0.58 Approach 84 10.0 0.042 5.9 LOS A 0.1 1.2 0.24 0.56 West: Carrington Ave - western leg Vestern leg	54.8	0.30	0.16	2.7	0.4	LOS A	5.8	0.091	6.1	35	L2	4
Approach 157 7.4 0.091 3.3 NA 0.4 2.7 0.16 0.30 North: North St - northern leg	56.5	0.30	0.16	2.7	0.4	LOS A	0.2	0.091	7.6	69	T1	5
North: North St - northern leg 7 L2 46 4.5 0.031 5.8 LOS A 0.1 0.9 0.17 0.54 8 T1 26 12.0 0.042 5.3 LOS A 0.1 1.2 0.34 0.58 9 R2 12 27.3 0.042 7.3 LOS A 0.1 1.2 0.34 0.58 Approach 84 10.0 0.042 5.9 LOS A 0.1 1.2 0.24 0.56 West: Carrington Ave - western leg	54.4	0.30	0.16	2.7	0.4	LOS A	5.9	0.091	8.0	53	R2	6
7 L2 46 4.5 0.031 5.8 LOS A 0.1 0.9 0.17 0.54 8 T1 26 12.0 0.042 5.3 LOS A 0.1 1.2 0.34 0.58 9 R2 12 27.3 0.042 7.3 LOS A 0.1 1.2 0.34 0.58 Approach 84 10.0 0.042 5.9 LOS A 0.1 1.2 0.24 0.56 West: Carrington Ave - western leg <	55.4	0.30	0.16	2.7	0.4	NA	3.3	0.091	7.4	157	ach	Appro
8 T1 26 12.0 0.042 5.3 LOS A 0.1 1.2 0.34 0.58 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.34 0.58 0.58 0.1 1.2 0.24 0.56 0.56 0.1 1.2 0.24 0.56 0.56 0.1 1.2 0.24 0.56 0.56 0.1 1.2 0.24 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56										rthern leg	North St - no	North:
9 R2 12 27.3 0.042 7.3 LOS A 0.1 1.2 0.34 0.58 Approach 84 10.0 0.042 5.9 LOS A 0.1 1.2 0.24 0.56 West: Carrington Ave - western leg </td <td>52.9</td> <td>0.54</td> <td>0.17</td> <td>0.9</td> <td>0.1</td> <td>LOS A</td> <td>5.8</td> <td>0.031</td> <td>4.5</td> <td>46</td> <td>L2</td> <td>7</td>	52.9	0.54	0.17	0.9	0.1	LOS A	5.8	0.031	4.5	46	L2	7
Approach 84 10.0 0.042 5.9 LOS A 0.1 1.2 0.24 0.56 West: Carrington Ave - western leg <td>53.2</td> <td>0.58</td> <td>0.34</td> <td>1.2</td> <td>0.1</td> <td>LOS A</td> <td>5.3</td> <td>0.042</td> <td>12.0</td> <td>26</td> <td>T1</td> <td>8</td>	53.2	0.58	0.34	1.2	0.1	LOS A	5.3	0.042	12.0	26	T1	8
West: Carrington Ave - western leg	52.0	0.58	0.34	1.2	0.1	LOS A	7.3	0.042	27.3	12	R2	9
	52.9	0.56	0.24	1.2	0.1	LOS A	5.9	0.042	10.0	84	ach	Appro
									n leg	/e - westerr	Carrington A	West:
10 L2 15 7.1 0.061 5.8 LOSA 0.1 1.0 0.09 0.15	56.4	0.15	0.09	1.0	0.1	LOS A	5.8	0.061	7.1	15	L2	10
11 T1 79 2.7 0.061 0.1 LOSA 0.1 1.0 0.09 0.15	58.3	0.15	0.09	1.0	0.1	LOS A	0.1	0.061	2.7	79	T1	11
12 R2 15 21.4 0.061 6.1 LOSA 0.1 1.0 0.09 0.15	55.5	0.15	0.09	1.0	0.1	LOS A	6.1	0.061	21.4	15	R2	12
Approach 108 5.8 0.061 1.7 NA 0.1 1.0 0.09 0.15	57.7	0.15	0.09	1.0	0.1	NA	1.7	0.061	5.8	108	ach	Appro
All Vehicles 411 6.9 0.091 3.8 NA 0.4 2.7 0.17 0.35	55.1	0.35	0.17	2.7	0.4	NA	3.8	0.091	6.9	411	nicles	All Vel

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:44:39 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 6 - North St - Carrington Ave.sip6

igvee Site: Site 6: North St - Carrington Ave (PM) Peak - Operational (2019)

Site 6: North St - Carrington Ave (PM) Peak - Operational (2019) Giveway / Yield (Two-Way)

		ormance - V									
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/h
South	North St - s		70	V/C	Sec	_	ven	m	_	per ven	K111/1
1	L2	8	0.0	0.018	5.7	LOS A	0.1	0.4	0.20	0.53	53.7
2	T1	13	0.0	0.018	5.1	LOS A	0.1	0.4	0.20	0.53	53.8
3	R2	34	0.0	0.045	7.5	LOS A	0.1	1.0	0.41	0.66	51.9
Appro	ach	55	0.0	0.045	6.6	LOS A	0.1	1.0	0.33	0.61	52.6
East: (Carrington A	ve - eastern l	eg								
4	L2	45	0.0	0.104	5.7	LOS A	0.4	3.0	0.16	0.31	55.0
5	T1	80	1.3	0.104	0.2	LOS A	0.4	3.0	0.16	0.31	56.4
6	R2	62	0.0	0.104	5.8	LOS A	0.4	3.0	0.16	0.31	54.7
Approa	ach	187	0.6	0.104	3.4	NA	0.4	3.0	0.16	0.31	55.5
North:	North St - n	orthern leg									
7	L2	116	0.0	0.076	5.8	LOS A	0.3	2.2	0.18	0.54	53.1
8	T1	44	0.0	0.062	5.2	LOS A	0.2	1.5	0.34	0.58	53.6
9	R2	17	0.0	0.062	6.7	LOS A	0.2	1.5	0.34	0.58	53.2
Approa	ach	177	0.0	0.076	5.7	LOS A	0.3	2.2	0.23	0.56	53.2
West:	Carrington A	Ave - western	leg								
10	L2	9	0.0	0.057	5.8	LOS A	0.1	0.6	0.07	0.11	57.1
11	T1	86	0.0	0.057	0.1	LOS A	0.1	0.6	0.07	0.11	58.7
12	R2	12	0.0	0.057	5.9	LOS A	0.1	0.6	0.07	0.11	56.8
Approa	ach	107	0.0	0.057	1.2	NA	0.1	0.6	0.07	0.11	58.3
All Vel	nicles	526	0.2	0.104	4.1	NA	0.4	3.0	0.18	0.38	54.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:44:40 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 6 - North St - Carrington Ave.sip6

V Site: Site 7: Oberon St - Un-named Rd - Ross St (AM) Peak - Operational (2019)

Site 7: Oberon St - Un-named Rd - Ross St (AM) Peak - Operational (2019) Giveway / Yield (Two-Way)

	(
		ormance - V		Dee	A	1		- 6 0	Duran	F #	A
Mov ID	OD Mov	Demand Total	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
	1010 0	veh/h	%	V/C	sec		venicies veh	m	Queueu	per veh	km/h
South	: Ross St - s	outhern leg									
1	L2	52	2.0	0.067	5.9	LOS A	0.3	1.8	0.22	0.55	53.2
2	T1	22	0.0	0.067	5.1	LOS A	0.3	1.8	0.22	0.55	53.4
3	R2	11	0.0	0.067	6.6	LOS A	0.3	1.8	0.22	0.55	52.7
Appro	ach	84	1.3	0.067	5.7	LOS A	0.3	1.8	0.22	0.55	53.2
East:	Oberon St -	eastern leg									
4	L2	24	4.3	0.076	5.7	LOS A	0.1	0.8	0.06	0.15	56.6
5	T1	103	4.1	0.076	0.0	LOS A	0.1	0.8	0.06	0.15	58.3
6	R2	14	0.0	0.076	5.7	LOS A	0.1	0.8	0.06	0.15	56.2
Appro	ach	141	3.7	0.076	1.6	NA	0.1	0.8	0.06	0.15	57.8
North:	Un-named I	Rd - northern	leg								
7	L2	11	0.0	0.023	5.7	LOS A	0.1	0.6	0.19	0.56	53.3
8	T1	6	0.0	0.023	5.0	LOS A	0.1	0.6	0.19	0.56	53.5
9	R2	8	0.0	0.023	6.8	LOS A	0.1	0.6	0.19	0.56	52.8
Appro	ach	25	0.0	0.023	5.9	LOS A	0.1	0.6	0.19	0.56	53.2
West:	Oberon St -	western leg									
10	L2	29	3.6	0.072	5.8	LOS A	0.2	1.6	0.13	0.24	55.6
11	T1	72	2.9	0.072	0.2	LOS A	0.2	1.6	0.13	0.24	57.3
12	R2	25	12.5	0.072	6.0	LOS A	0.2	1.6	0.13	0.24	54.6
Appro	ach	126	5.0	0.072	2.6	NA	0.2	1.6	0.13	0.24	56.3
All Vel	nicles	377	3.4	0.076	3.2	NA	0.3	1.8	0.13	0.30	55.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:49:26 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 7 - Oberon St - Un-named Rd - Ross St.sip6

V Site: Site 7: Oberon St - Un-named Rd - Ross St (PM) Peak - Operational (2019)

Site 7: Oberon St - Un-named Rd - Ross St (PM) Peak - Operational (2019) Giveway / Yield (Two-Way)

Maxe	mont Dout		abialaa								
Mov	OD	ormance - V Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Ross St - s	outhern leg									
1	L2	59	1.8	0.064	5.9	LOS A	0.2	1.7	0.21	0.56	53.0
2	T1	5	0.0	0.064	5.7	LOS A	0.2	1.7	0.21	0.56	53.2
3	R2	15	0.0	0.064	7.2	LOS A	0.2	1.7	0.21	0.56	52.6
Approa	ach	79	1.3	0.064	6.1	LOS A	0.2	1.7	0.21	0.56	52.9
East: (Oberon St -	eastern leg									
4	L2	19	0.0	0.073	5.8	LOS A	0.1	0.7	0.07	0.12	57.0
5	T1	106	4.0	0.073	0.1	LOS A	0.1	0.7	0.07	0.12	58.5
6	R2	11	0.0	0.073	6.0	LOS A	0.1	0.7	0.07	0.12	56.4
Approa	ach	136	3.1	0.073	1.3	NA	0.1	0.7	0.07	0.12	58.1
North:	Un-named	Rd - northern	leg								
7	L2	14	0.0	0.054	6.0	LOS A	0.2	1.3	0.33	0.61	52.8
8	T1	12	0.0	0.054	5.6	LOS A	0.2	1.3	0.33	0.61	52.9
9	R2	24	0.0	0.054	7.5	LOS A	0.2	1.3	0.33	0.61	52.3
Approa	ach	49	0.0	0.054	6.6	LOS A	0.2	1.3	0.33	0.61	52.5
West:	Oberon St -	western leg									
10	L2	48	2.2	0.151	5.9	LOS A	0.6	4.0	0.17	0.24	55.5
11	T1	152	2.8	0.151	0.2	LOS A	0.6	4.0	0.17	0.24	57.0
12	R2	73	0.0	0.151	5.8	LOS A	0.6	4.0	0.17	0.24	55.0
Approa	ach	273	1.9	0.151	2.7	NA	0.6	4.0	0.17	0.24	56.2
All Ver	nicles	537	2.0	0.151	3.2	NA	0.6	4.0	0.16	0.29	55.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:49:27 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 7 - Oberon St - Un-named Rd - Ross St.sip6

igvee Site: Site 8: Albion St - Duckmaloi Rd (AM) Peak - Operational (2019)

Site 8: Albion St - Duckmaloi Rd (AM) Peak - Operational (2019) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Coot: [Duckmaloi R	veh/h	%	v/c	sec	_	veh	m		per veh	km/h
			•								
5	T1	53	8.0	0.028	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	35	54.5	0.032	6.2	LOS A	0.1	1.3	0.10	0.57	50.5
Approa	ach	87	26.5	0.032	2.5	NA	0.1	1.3	0.04	0.23	55.8
North:	Albion St - r	northern leg									
7	L2	23	72.7	0.032	6.5	LOS A	0.1	1.2	0.09	0.55	50.4
9	R2	6	16.7	0.032	6.5	LOS A	0.1	1.2	0.09	0.55	52.4
Appro	ach	29	60.7	0.032	6.5	LOS A	0.1	1.2	0.09	0.55	50.8
West:	Duckmaloi F	Rd - western	leg								
10	L2	3	0.0	0.002	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
11	T1	23	0.0	0.012	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Appro	ach	26	0.0	0.012	0.7	NA	0.0	0.0	0.00	0.07	59.2
All Vel	nicles	143	28.7	0.032	3.0	NA	0.1	1.3	0.04	0.26	55.3

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:52:13 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 8 - Albion St - Duckmaloi Rd.sip6

V Site: Site 8: Albion St - Duckmaloi Rd (PM) Peak - Operational (2019)

Site 8: Albion St - Duckmaloi Rd (PM) Peak - Operational (2019) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - \	/ehicles								
Mov	OD	Demanc		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
E a a fu F		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: L	Duckmaloi R	d - eastern le	eg								
5	T1	41	10.3	0.022	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	31	65.5	0.030	6.6	LOS A	0.1	1.3	0.16	0.56	49.9
Approa	ach	72	33.8	0.030	2.8	NA	0.1	1.3	0.07	0.24	55.2
North:	Albion St - r	orthern leg									
7	L2	24	43.5	0.033	6.3	LOS A	0.1	1.1	0.14	0.55	51.4
9	R2	9	0.0	0.033	6.3	LOS A	0.1	1.1	0.14	0.55	53.0
Approa	ach	34	31.3	0.033	6.3	LOS A	0.1	1.1	0.14	0.55	51.8
West:	Duckmaloi F	Rd - western	leg								
10	L2	9	11.1	0.006	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	44	2.4	0.023	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	54	3.9	0.023	1.0	NA	0.0	0.0	0.00	0.10	58.7
All Veh	nicles	159	23.2	0.033	2.9	NA	0.1	1.3	0.06	0.26	55.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:52:14 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 8 - Albion St - Duckmaloi Rd.sip6

V Site: Site 1: Abercrombie Rd - Rupert St (AM) Peak - Operational (2029)

Site 1: Abercrombie Rd - Rupert St (AM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Osutha	A b a m a b b	veh/h	%	v/c	sec		veh	m		per veh	km/h
		ie Rd - south	0								
2	T1	23	36.4	0.040	0.0	LOS A	0.2	1.3	0.01	0.09	59.1
3	R2	51	12.5	0.040	5.7	LOS A	0.2	1.3	0.09	0.53	52.6
Appro	ach	74	20.0	0.040	3.9	NA	0.2	1.3	0.06	0.39	54.5
East: F	Rupert St - e	astern leg									
4	L2	26	8.0	0.022	5.7	LOS A	0.1	0.6	0.07	0.55	53.1
6	R2	1	0.0	0.022	6.1	LOS A	0.1	0.6	0.07	0.55	53.2
Appro	ach	27	7.7	0.022	5.7	LOS A	0.1	0.6	0.07	0.55	53.1
North:	Abercrombi	e Rd - northe	rn leg								
7	L2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
8	T1	18	35.3	0.011	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	19	33.3	0.011	0.3	NA	0.0	0.0	0.00	0.03	59.6
All Vel	nicles	120	19.3	0.040	3.7	NA	0.2	1.3	0.06	0.37	54.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 3:55:50 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 1 - Abercrombie Rd - Rupert St.sip6

V Site: Site 1: Abercrombie Rd - Rupert St (PM) Peak - Operational (2029)

Site 1: Abercrombie Rd - Rupert St (AM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Osutha	A b a m a b b	veh/h	%	v/c	sec		veh	m		per veh	km/h
		ie Rd - southe	0								
2	T1	23	54.5	0.036	0.0	LOS A	0.1	1.2	0.03	0.16	58.3
3	R2	43	7.3	0.036	5.6	LOS A	0.1	1.2	0.09	0.49	52.9
Appro	ach	66	23.8	0.036	3.7	NA	0.1	1.2	0.07	0.37	54.7
East: F	Rupert St - e	astern leg									
4	L2	56	0.0	0.045	5.6	LOS A	0.2	1.1	0.08	0.55	53.4
6	R2	2	0.0	0.045	6.1	LOS A	0.2	1.1	0.08	0.55	53.1
Appro	ach	58	0.0	0.045	5.6	LOS A	0.2	1.1	0.08	0.55	53.3
North:	Abercrombi	e Rd - northe	rn leg								
7	L2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
8	T1	25	4.2	0.013	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	26	4.0	0.013	0.2	NA	0.0	0.0	0.00	0.02	59.7
All Vel	nicles	151	11.2	0.045	3.8	NA	0.2	1.2	0.06	0.38	55.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 3:55:51 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 1 - Abercrombie Rd - Rupert St.sip6

Site: Site 2: O'Connell Rd - Abercrombie Rd - Albion St (AM) Peak - Operational (2029)

Site 2: O'Connell Rd - Abercrombie Rd - Albion St (AM) Peak - Operational (2029) Roundabout

Maxe	mont Der		lahialaa								
Move Mov	OD	formance - \ Demanc		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: O'Connell	Rd - southern	ı leg								
1	L2	1	0.0	0.050	4.2	LOS A	0.2	1.7	0.21	0.43	54.3
2	T1	57	3.7	0.050	4.4	LOS A	0.2	1.7	0.21	0.43	55.5
3	R2	5	0.0	0.050	9.0	LOS A	0.2	1.7	0.21	0.43	55.6
Appro	ach	63	3.3	0.050	4.8	LOS A	0.2	1.7	0.21	0.43	55.5
East: /	Albion St - e	eastern leg									
4	L2	4	0.0	0.055	4.1	LOS A	0.3	2.4	0.20	0.55	52.3
5	T1	14	61.5	0.055	5.0	LOS A	0.3	2.4	0.20	0.55	52.2
6	R2	42	35.0	0.055	9.5	LOS A	0.3	2.4	0.20	0.55	52.2
Appro	ach	60	38.6	0.055	8.1	LOS A	0.3	2.4	0.20	0.55	52.2
North:	O'Connell	Rd - northern	leg								
7	L2	54	29.4	0.082	4.2	LOS A	0.4	3.3	0.10	0.44	54.0
8	T1	53	8.0	0.082	4.2	LOS A	0.4	3.3	0.10	0.44	56.1
9	R2	6	0.0	0.082	8.8	LOS A	0.4	3.3	0.10	0.44	56.3
Appro	ach	113	17.8	0.082	4.5	LOS A	0.4	3.3	0.10	0.44	55.1
West:	Abercromb	ie Rd - wester	n leg								
10	L2	5	0.0	0.015	4.3	LOS A	0.1	0.6	0.27	0.45	54.2
11	T1	9	55.6	0.015	5.3	LOS A	0.1	0.6	0.27	0.45	54.2
12	R2	1	0.0	0.015	9.2	LOS A	0.1	0.6	0.27	0.45	55.5
Appro		16	33.3	0.015	5.2	LOSA	0.1	0.6	0.27	0.45	54.3
All Vel	nicles	252	20.1	0.082	5.5	LOS A	0.4	3.3	0.16	0.46	54.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:09:57 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 2 - O'Connell Rd - Abercrombie Rd - Albion St.sip6

V Site: Site 2: O'Connell Rd - Abercrombie Rd - Albion St (PM) Peak - Operational (2029)

Site 2: O'Connell Rd - Abercrombie Rd - Albion St (PM) Peak - Operational (2029) Roundabout

Move	ment P <u>erf</u>	formance - \	/ehicles								
Mov	OD	Demano	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11	010	veh/h	%	v/c	sec		veh	m		per veh	km/h
		Rd - southern	-						.		
1	L2	2	0.0	0.044	4.0	LOS A	0.2	1.6	0.14	0.40	54.8
2	T1	54	13.7	0.044	4.4	LOS A	0.2	1.6	0.14	0.40	55.8
3	R2	1	0.0	0.044	8.9	LOS A	0.2	1.6	0.14	0.40	56.1
Appro	ach	57	13.0	0.044	4.4	LOS A	0.2	1.6	0.14	0.40	55.8
East: /	Albion St - e	eastern leg									
4	L2	2	50.0	0.024	4.9	LOS A	0.1	0.9	0.22	0.56	50.9
5	T1	5	20.0	0.024	4.6	LOS A	0.1	0.9	0.22	0.56	53.1
6	R2	19	27.8	0.024	9.4	LOS A	0.1	0.9	0.22	0.56	52.4
Appro	ach	26	28.0	0.024	8.1	LOS A	0.1	0.9	0.22	0.56	52.4
North:	O'Connell	Rd - northern	leg								
7	L2	33	38.7	0.082	4.4	LOS A	0.4	3.3	0.14	0.44	53.5
8	T1	65	9.7	0.082	4.3	LOS A	0.4	3.3	0.14	0.44	55.8
9	R2	8	12.5	0.082	9.0	LOS A	0.4	3.3	0.14	0.44	55.4
Appro	ach	106	18.8	0.082	4.7	LOS A	0.4	3.3	0.14	0.44	55.0
West:	Abercromb	ie Rd - wester	n leg								
10	L2	7	14.3	0.032	4.4	LOS A	0.1	1.3	0.23	0.45	53.6
11	T1	23	50.0	0.032	5.0	LOS A	0.1	1.3	0.23	0.45	54.1
12	R2	4	0.0	0.032	9.0	LOS A	0.1	1.3	0.23	0.45	55.3
Appro	ach	35	36.4	0.032	5.4	LOS A	0.1	1.3	0.23	0.45	54.1
All Vel	nicles	224	21.1	0.082	5.2	LOS A	0.4	3.3	0.16	0.44	54.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:09:59 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 2 - O'Connell Rd - Abercrombie Rd - Albion St.sip6

W Site: Site 3: Lowes Mount Rd - Albion St - North St (AM) Peak - Operational (2029)

Site 3: Lowes Mount Rd - Albion St - North St (AM) Peak - Operational (2029) Roundabout

			/. I. T. I.								
		ormance - \		Dee	A	1		- 1 0	Duran		0
Mov ID	OD Mov	Demano Total	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
	1010 0	veh/h	%	V/C	sec		venicies	m	Queueu	per veh	km/h
South	North St - s	southern leg									
1	L2	23	4.5	0.084	4.3	LOS A	0.4	3.1	0.25	0.54	53.0
2	T1	27	0.0	0.084	4.5	LOS A	0.4	3.1	0.25	0.54	54.5
3	R2	48	26.1	0.084	9.5	LOS A	0.4	3.1	0.25	0.54	53.4
Appro	ach	99	13.8	0.084	6.9	LOS A	0.4	3.1	0.25	0.54	53.6
East: /	Albion St - ea	astern leg									
4	L2	47	6.7	0.098	4.3	LOS A	0.5	4.2	0.23	0.48	54.2
5	T1	41	30.8	0.098	4.8	LOS A	0.5	4.2	0.23	0.48	55.0
6	R2	23	72.7	0.098	10.1	LOS A	0.5	4.2	0.23	0.48	52.7
Appro	ach	112	29.2	0.098	5.7	LOS A	0.5	4.2	0.23	0.48	54.2
North:	Lowes Mou	int Rd - north	ern leg								
7	L2	31	72.4	0.075	5.5	LOS A	0.3	3.2	0.29	0.50	51.6
8	T1	32	3.3	0.075	4.6	LOS A	0.3	3.2	0.29	0.50	54.9
9	R2	15	35.7	0.075	9.8	LOS A	0.3	3.2	0.29	0.50	53.5
Appro	ach	77	37.0	0.075	6.0	LOS A	0.3	3.2	0.29	0.50	53.3
West:	Albion St - v	vestern leg									
10	L2	9	44.4	0.060	5.0	LOS A	0.3	2.4	0.28	0.52	51.6
11	T1	29	39.3	0.060	5.1	LOS A	0.3	2.4	0.28	0.52	53.2
12	R2	24	13.0	0.060	9.4	LOS A	0.3	2.4	0.28	0.52	53.6
Appro	ach	63	30.0	0.060	6.7	LOS A	0.3	2.4	0.28	0.52	53.1
All Vel	nicles	351	26.7	0.098	6.3	LOS A	0.5	4.2	0.26	0.51	53.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:21:17 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 3 - Lowes Mount Rd - Albion St - North St.sip6

W Site: Site 3: Lowes Mount Rd - Albion St - North St (PM) Peak - Operational (2029)

Site 3: Lowes Mount Rd - Albion St -North St (PM) Peak - Operational (2029) Roundabout

e nt Perfo OD Mov	rmance - \ Demand									
	Demand		_							
			Deg.	Average	Level of	95% Back		Prop.	Effective	Average
	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
orth St - s		/0	V/C	360		VCII				K11/1
L2	28	3.7	0.112	4.3	LOS A	0.6	4.2	0.25	0.54	53.0
T1	47	13.3	0.112	4.7	LOS A	0.6	4.2	0.25	0.54	54.0
R2	62	8.5	0.112	9.3	LOS A	0.6	4.2	0.25	0.54	54.0
า	138	9.2	0.112	6.7	LOS A	0.6	4.2	0.25	0.54	53.8
ion St - ea	astern leg									
L2	66	9.5	0.112	4.6	LOS A	0.5	4.7	0.31	0.51	53.9
T1	27	34.6	0.112	5.1	LOS A	0.5	4.7	0.31	0.51	54.7
R2	24	73.9	0.112	10.6	LOS A	0.5	4.7	0.31	0.51	52.5
า	118	28.6	0.112	5.9	LOS A	0.5	4.7	0.31	0.51	53.8
wes Mour	nt Rd - north	ern leg								
L2	28	66.7	0.106	5.9	LOS A	0.5	4.2	0.36	0.53	51.5
T1	55	0.0	0.106	4.9	LOS A	0.5	4.2	0.36	0.53	54.7
R2	23	36.4	0.106	10.2	LOS A	0.5	4.2	0.36	0.53	53.2
า	106	25.7	0.106	6.3	LOS A	0.5	4.2	0.36	0.53	53.5
oion St - w	estern leg									
L2	16	46.7	0.111	5.3	LOS A	0.5	4.6	0.34	0.55	51.4
T1	58	43.6	0.111	5.4	LOS A	0.5	4.6	0.34	0.55	53.0
R2	39	2.7	0.111	9.4	LOS A	0.5	4.6	0.34	0.55	53.8
ı	113	29.9	0.111	6.8	LOS A	0.5	4.6	0.34	0.55	53.0
les	475	22.6	0.112	6.4	LOS A	0.6	4.7	0.31	0.53	53.5
	L2 T1 R2 ion St - ea L2 T1 R2 wes Moun L2 T1 R2 ion St - w L2 T1 R2 ion St - w L2	L2 28 T1 47 R2 62 n 138 ion St - eastern leg L2 L2 66 T1 27 R2 24 n 118 wes Mount Rd - north L2 L2 28 T1 55 R2 23 n 106 bion St - western leg L2 L2 16 T1 58 R2 39 n 113	L2 28 3.7 T1 47 13.3 R2 62 8.5 n 138 9.2 ion St - eastern leg $L2$ 66 9.5 T1 27 34.6 8.2 R2 24 73.9 73.9 n 118 28.6 8.6 wes Mount Rd - northern leg $L2$ 28 66.7 T1 55 0.0 $R2$ 23 36.4 n 106 25.7 106 25.7 106 25.7 n 106 25.7 36.4 106 25.7 113 29.9	brick St - southern legL228 3.7 0.112 T147 13.3 0.112 R2 62 8.5 0.112 n 138 9.2 0.112 T1 27 34.6 0.112 R2 24 73.9 0.112 n 118 28.6 0.112 wes Mount Rd - northern legL2 28 66.7 0.106 T1 55 0.0 0.106 R2 23 36.4 0.106 n 106 25.7 0.106 n 106 25.7 0.111 T1 58 43.6 0.111 R2 39 2.7 0.111 n 113 29.9 0.111	brick St - southern legL2283.70.1124.3T14713.30.1124.7R2628.50.1129.3n1389.20.1126.7ion St - eastern legU4.65.1L2669.50.1124.6T12734.60.1125.1R22473.90.11210.6n11828.60.1125.9wes Mount Rd - northern legU5.9L22866.70.1065.9T1550.00.1064.9R22336.40.10610.2n10625.70.1066.3bion St - western legUU5.4R2392.70.1115.4R2392.70.1116.8	Derth St - southern leg L2 28 3.7 0.112 4.3 LOS A T1 47 13.3 0.112 4.7 LOS A R2 62 8.5 0.112 9.3 LOS A n 138 9.2 0.112 6.7 LOS A ion St - eastern leg	Derth St - southern leg L2 28 3.7 0.112 4.3 LOS A 0.6 T1 47 13.3 0.112 4.7 LOS A 0.6 R2 62 8.5 0.112 9.3 LOS A 0.6 n 138 9.2 0.112 6.7 LOS A 0.6 ion St - eastern leg - - L2 66 9.5 0.112 4.6 LOS A 0.5 T1 27 34.6 0.112 5.1 LOS A 0.5 R2 24 73.9 0.112 10.6 LOS A 0.5 R2 24 73.9 0.112 5.9 LOS A 0.5 mes Mount Rd - northerr leg - - 118 28.6 0.106 5.9 LOS A 0.5 R2 23 36.4 0.106 10.2 LOS A 0.5 R1 55 0.0 0.106 4.9 LOS A 0.5 mon St - western leg - - 106 25.7 0.1	orth St - southern leg L2 28 3.7 0.112 4.3 LOS A 0.6 4.2 T1 47 13.3 0.112 4.7 LOS A 0.6 4.2 R2 62 8.5 0.112 9.3 LOS A 0.6 4.2 n 138 9.2 0.112 6.7 LOS A 0.6 4.2 ion St - eastern leg	L2 28 3.7 0.112 4.3 LOS A 0.6 4.2 0.25 T1 47 13.3 0.112 4.7 LOS A 0.6 4.2 0.25 R2 62 8.5 0.112 9.3 LOS A 0.6 4.2 0.25 n 138 9.2 0.112 6.7 LOS A 0.6 4.2 0.25 ion St - eastern leg	borth St - southern leg L2 28 3.7 0.112 4.3 LOS A 0.6 4.2 0.25 0.54 T1 47 13.3 0.112 4.7 LOS A 0.6 4.2 0.25 0.54 R2 62 8.5 0.112 9.3 LOS A 0.6 4.2 0.25 0.54 n 138 9.2 0.112 6.7 LOS A 0.6 4.2 0.25 0.54 ion St - eastern leg

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:21:19 PM

Project: I:\projects\30011699 - Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 3 - Lowes Mount Rd - Albion St - North St.sip6

igvee Site: Site 4: Horace St - Albion St (AM) Peak - Operational (2029)

Site 4: Horace St - Albion St (AM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - \	/ehicles								
Mov	OD	Demano	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East.		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Albion St - w	U									
5	T1	97	37.0	0.066	0.0	LOS A	0.1	0.5	0.04	0.05	59.2
6	R2	8	0.0	0.066	5.7	LOS A	0.1	0.5	0.04	0.05	57.0
Approa	ach	105	34.0	0.066	0.5	NA	0.1	0.5	0.04	0.05	59.0
North:	Horace St -	northern leg									
7	L2	3	0.0	0.011	5.8	LOS A	0.0	0.3	0.22	0.57	53.0
9	R2	9	0.0	0.011	6.1	LOS A	0.0	0.3	0.22	0.57	52.5
Appro	ach	13	0.0	0.011	6.0	LOS A	0.0	0.3	0.22	0.57	52.6
West:	Albion St - w	estern leg									
10	L2	12	0.0	0.058	5.5	LOS A	0.0	0.0	0.00	0.08	57.3
11	T1	78	44.6	0.058	0.0	LOS A	0.0	0.0	0.00	0.08	58.9
Approa	ach	89	38.8	0.058	0.7	NA	0.0	0.0	0.00	0.08	58.6
All Vel	nicles	207	34.0	0.066	0.9	NA	0.1	0.5	0.03	0.09	58.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:29:59 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 4 - Horace St - Albion St.sip6

V Site: Site 4: Horace St - Albion St (PM) Peak - Operational (2029)

Site 4: Horace St - Albion St (PM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - \	/ehicles								
Mov	OD	Demanc		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Fast		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: A	Albion St - w	0									
5	T1	104	31.3	0.072	0.1	LOS A	0.1	0.7	0.06	0.06	59.1
6	R2	12	9.1	0.072	6.0	LOS A	0.1	0.7	0.06	0.06	56.4
Approa	ach	116	29.1	0.072	0.7	NA	0.1	0.7	0.06	0.06	58.8
North:	Horace St -	northern leg									
7	L2	7	0.0	0.019	5.9	LOS A	0.1	0.5	0.26	0.57	52.9
9	R2	13	16.7	0.019	6.7	LOS A	0.1	0.5	0.26	0.57	51.6
Appro	ach	20	10.5	0.019	6.4	LOS A	0.1	0.5	0.26	0.57	52.1
West:	Albion St - w	vestern leg									
10	L2	6	16.7	0.081	5.7	LOS A	0.0	0.0	0.00	0.03	57.2
11	T1	126	30.0	0.081	0.0	LOS A	0.0	0.0	0.00	0.03	59.7
Approa	ach	133	29.4	0.081	0.3	NA	0.0	0.0	0.00	0.03	59.6
All Vel	nicles	268	27.8	0.081	0.9	NA	0.1	0.7	0.05	0.08	58.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:30:00 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 4 - Horace St - Albion St.sip6

V Site: Site 5: Endeavour St - Albion St (AM) Peak - Operational (2029)

Site 5: Endeavour St - Albion St (AM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - `	Vehicles								
Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East.		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Albion St - e	0									
5	T1	93	31.8	0.059	0.0	LOS A	0.0	0.1	0.01	0.01	59.9
6	R2	1	100.0	0.059	6.7	LOS A	0.0	0.1	0.01	0.01	55.0
Approa	Approach		32.6	0.059	0.2	NA	0.0	0.1	0.01	0.01	59.8
North:	Endeavour	St - northerr	ı leg								
7	L2	2	50.0	0.010	6.4	LOS A	0.0	0.4	0.24	0.56	50.9
9	R2	6	83.3	0.010	7.6	LOS A	0.0	0.4	0.24	0.56	48.9
Appro	ach	8	75.0	0.010	7.3	LOS A	0.0	0.4	0.24	0.56	49.4
West:	Albion St - v	vestern leg									
10	L2	12	72.7	0.053	6.4	LOS A	0.0	0.0	0.00	0.08	54.5
11	T1	68	36.9	0.053	0.0	LOS A	0.0	0.0	0.00	0.08	59.6
Approa	ach	80	42.1	0.053	0.9	NA	0.0	0.0	0.00	0.08	58.8
All Vehicles 182		38.7	0.059	0.8	NA	0.0	0.4	0.01	0.07	58.8	

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:40:19 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 5 - Endeavour St - Albion St.sip6

V Site: Site 5: Endeavour St - Albion St (PM) Peak - Operational (2029)

Site 5: Endeavour St - Albion St (PM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Move	ment Perfe	ormance - \	/ehicles								
Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: A	Albion St - ea	astern leg									
5	T1	103	26.5	0.063	0.0	LOS A	0.0	0.1	0.01	0.01	59.9
6	R2	1	0.0	0.063	5.9	LOS A	0.0	0.1	0.01	0.01	57.6
Approa	ach	104	26.3	0.063	0.1	NA	0.0	0.1	0.01	0.01	59.9
North:	Endeavour	St - northern	leg								
7	L2	6	50.0	0.023	6.6	LOS A	0.1	0.8	0.28	0.59	50.8
9	R2	15	42.9	0.023	7.2	LOS A	0.1	0.8	0.28	0.59	50.5
Approa	ach	21	45.0	0.023	7.0	LOS A	0.1	0.8	0.28	0.59	50.6
West:	Albion St - v	vestern leg									
10	L2	17	62.5	0.082	6.3	LOS A	0.0	0.0	0.00	0.07	55.0
11	T1	116	23.6	0.082	0.0	LOS A	0.0	0.0	0.00	0.07	59.6
Approa	ach	133	28.6	0.082	0.8	NA	0.0	0.0	0.00	0.07	59.0
All Veh	nicles	258	29.0	0.082	1.0	NA	0.1	0.8	0.03	0.09	58.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:40:20 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 5 - Endeavour St - Albion St.sip6

igvee Site: Site 6: North St - Carrington Ave (AM) Peak - Operational (2029)

Site 6: North St - Carrington Ave (AM) Peak - Operational (2029) Giveway / Yield (Two-Way)

	ment Perfo				•			()			
Mov	OD	Demano		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/ł
South	: North St - s		,,,				Volt				
1	L2	13	8.3	0.027	5.8	LOS A	0.1	0.7	0.19	0.54	53.3
2	T1	19	5.6	0.027	5.1	LOS A	0.1	0.7	0.19	0.54	53.7
3	R2	29	0.0	0.035	6.9	LOS A	0.1	0.8	0.35	0.62	52.3
Appro	ach	61	3.4	0.035	6.1	LOS A	0.1	0.8	0.27	0.58	52.9
East:	Carrington Av	ve - eastern	leg								
4	L2	35	6.1	0.091	5.8	LOS A	0.4	2.7	0.16	0.30	54.8
5	T1	69	7.6	0.091	0.2	LOS A	0.4	2.7	0.16	0.30	56.5
6	R2	53	8.0	0.091	5.9	LOS A	0.4	2.7	0.16	0.30	54.4
Appro	ach	157	7.4	0.091	3.3	NA	0.4	2.7	0.16	0.30	55.4
North:	North St - n	orthern leg									
7	L2	46	4.5	0.031	5.8	LOS A	0.1	0.9	0.17	0.54	52.9
8	T1	26	12.0	0.042	5.3	LOS A	0.1	1.2	0.34	0.58	53.2
9	R2	12	27.3	0.042	7.3	LOS A	0.1	1.2	0.34	0.58	52.0
Appro	ach	84	10.0	0.042	5.9	LOS A	0.1	1.2	0.24	0.56	52.9
West:	Carrington A	ve - western	ı leg								
10	L2	15	7.1	0.061	5.8	LOS A	0.1	1.0	0.09	0.15	56.4
11	T1	79	2.7	0.061	0.1	LOS A	0.1	1.0	0.09	0.15	58.3
12	R2	15	21.4	0.061	6.1	LOS A	0.1	1.0	0.09	0.15	55.5
Approach		108	5.8	0.061	1.7	NA	0.1	1.0	0.09	0.15	57.7
All Vehicles		411	6.9	0.091	3.8	NA	0.4	2.7	0.17	0.35	55.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:44:41 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 6 - North St - Carrington Ave.sip6

igvee Site: Site 6: North St - Carrington Ave (PM) Peak - Operational (2029)

Site 6: North St - Carrington Ave (PM) Peak - Operational (2029) Giveway / Yield (Two-Way)

										Average
Mov					Service			Queued		Speed km/h
North St - s		/0	V/C	360		Ven			per ven	N111/11
L2	8	0.0	0.018	5.7	LOS A	0.1	0.4	0.20	0.53	53.7
T1	13	0.0	0.018	5.1	LOS A	0.1	0.4	0.20	0.53	53.8
R2	34	0.0	0.045	7.5	LOS A	0.1	1.0	0.41	0.66	51.9
ach	55	0.0	0.045	6.6	LOS A	0.1	1.0	0.33	0.61	52.6
Carrington A	ve - eastern le	eg								
L2	45	0.0	0.104	5.7	LOS A	0.4	3.0	0.16	0.31	55.0
T1	80	1.3	0.104	0.2	LOS A	0.4	3.0	0.16	0.31	56.4
R2	62	0.0	0.104	5.8	LOS A	0.4	3.0	0.16	0.31	54.7
ach	187	0.6	0.104	3.4	NA	0.4	3.0	0.16	0.31	55.5
North St - n	orthern leg									
L2	116	0.0	0.076	5.8	LOS A	0.3	2.2	0.18	0.54	53.1
T1	44	0.0	0.062	5.2	LOS A	0.2	1.5	0.34	0.58	53.6
R2	17	0.0	0.062	6.7	LOS A	0.2	1.5	0.34	0.58	53.2
ach	177	0.0	0.076	5.7	LOS A	0.3	2.2	0.23	0.56	53.2
Carrington A	Ave - western	leg								
L2	9	0.0	0.057	5.8	LOS A	0.1	0.6	0.07	0.11	57.1
T1	86	0.0	0.057	0.1	LOS A	0.1	0.6	0.07	0.11	58.7
R2	12	0.0	0.057	5.9	LOS A	0.1	0.6	0.07	0.11	56.8
ach	107	0.0	0.057	1.2	NA	0.1	0.6	0.07	0.11	58.3
icles	526	0.2	0.104	4.1	NA	0.4	3.0	0.18	0.38	54.9
	OD Mov North St - s L2 T1 R2 ach Carrington A L2 T1 R2 ach North St - r L2 T1 R2 ach Carrington A L2 T1 R2 ach	ODDemand Total veh/hNorth St - southern legL28T113R234ach55Carrington Ave - eastern legL245T180R262ach187North St - northern legL2116T144R217ach177Carrington Ave - westernL29T186R212ach107	Mov Total veh/h HV % North St - southern leg 1 L2 8 0.0 T1 13 0.0 R2 34 0.0 ach 55 0.0 Carrington Ave - eastern leg 1.3 L2 45 0.0 T1 80 1.3 R2 62 0.0 T1 80 1.3 R2 62 0.0 ach 187 0.6 North St - northern leg 1.2 116 0.0 T1 44 0.0 R2 17 0.0 ach 177 0.0 0.0 171 86 0.0 R2 12 0.0 1 86 0.0 1 R2 12 0.0 107 0.0 1	OD Mov Demand Flows Total veh/h Deg. Satn v/c North St - southern leg V/C L2 8 0.0 0.018 T1 13 0.0 0.018 R2 34 0.0 0.045 ach 55 0.0 0.045 Carrington Ave - eastern leg L L 45 L2 45 0.0 0.104 T1 80 1.3 0.104 R2 62 0.0 0.104 R2 62 0.0 0.104 R2 62 0.0 0.104 R2 62 0.0 0.104 R2 187 0.6 0.104 North St - northern leg L L 116 0.0 0.062 R2 17 0.0 0.062 0.076 0.076 0.076 Carrington Ave - western leg L 2 9 0.0 0.057 R2 12 0.0 0.05	OD MovDemand Flows TotalDeg. SatnAverage Delay v/cNorth St - southern legL280.00.0185.7T1130.00.0185.1R2340.00.0457.5ach550.00.0456.6Carrington Ave - eastern legL2450.00.1045.7T1801.30.1040.2R2620.00.1045.8ach1870.60.1043.4North St - northern legL21160.00.0765.8T1440.00.0626.7ach1770.00.0765.7Carrington Ave - western legL2160.00.0765.8T1440.00.0626.7ach1770.00.0575.8T1860.00.0575.9ach1070.00.0571.2	OD Mov Demand Flows Total veh/h Deg. HV Average Sath Delay v/c Level of Service North St - southern leg 5 0.0 0.018 5.7 LOS A 1 13 0.0 0.018 5.1 LOS A R2 34 0.0 0.045 7.5 LOS A ach 55 0.0 0.045 6.6 LOS A Carrington Ave - eastern leg 2 45 0.0 0.104 5.7 LOS A R2 62 0.0 0.104 5.7 LOS A R2 62 0.0 0.104 5.7 LOS A R2 62 0.0 0.104 5.8 LOS A R2 116 0.0 0.076 5.8 LOS A R2 17 0.0 0.062 5.2 LOS A R2 17 0.0 0.062 6.7 LOS A R2 17 0.0 0.057 5.8 LOS A R2	OD Mov Demand Flows Total (veh/h) Deg. Wv Average Delay sec Level of Service 95% Back (veh) Vehicles veh North St - southern leg 5atn V/c Sec Vehicles Vehicles L2 8 0.0 0.018 5.7 LOS A 0.1 T1 13 0.0 0.018 5.1 LOS A 0.1 R2 34 0.0 0.045 7.5 LOS A 0.1 ach 55 0.0 0.045 6.6 LOS A 0.1 ach 55 0.0 0.104 5.7 LOS A 0.4 T1 80 1.3 0.104 0.2 LOS A 0.4 R2 62 0.0 0.104 5.8 LOS A 0.4 R2 62 0.0 0.104 3.4 NA 0.4 North St - northern leg Vehicles Vehicles Vehicles Vehicles L2 116 0.0 0.076 5.8 LOS A <td>OD Mov Demand Flows Total Peg. HV Average Satn Level of Delay 95% Back of Queue Vehicles Distance Distance North St - southern leg </td> <td>OD Mov Demand Flows total Deg. HV Average Satin v/c Level of Service 95% Back of Queue veh Prop. Queued North St - southern leg </td> <td>OD Mov Demand Flows Total Deg. HV v/c Average Satu Level of Delay sec 95% Back of Queue veh Prop. Distance weh Effective Stop Rate per veh North St - southern leg 1 0.0 0.018 5.7 LOS A 0.1 0.4 0.20 0.53 T1 13 0.0 0.018 5.1 LOS A 0.1 0.4 0.20 0.53 R2 34 0.0 0.045 7.5 LOS A 0.1 1.0 0.41 0.66 ach 55 0.0 0.045 6.6 LOS A 0.1 1.0 0.33 0.61 carrington Ave - eastern leg - - L2 45 0.0 0.104 5.7 LOS A 0.4 3.0 0.16 0.31 R2 62 0.0 0.104 5.8 LOS A 0.4 3.0 0.16 0.31 R2 187 0.6 0.104 3.4 NA 0.4 3.0 0.16 0.31</td>	OD Mov Demand Flows Total Peg. HV Average Satn Level of Delay 95% Back of Queue Vehicles Distance Distance North St - southern leg	OD Mov Demand Flows total Deg. HV Average Satin v/c Level of Service 95% Back of Queue veh Prop. Queued North St - southern leg	OD Mov Demand Flows Total Deg. HV v/c Average Satu Level of Delay sec 95% Back of Queue veh Prop. Distance weh Effective Stop Rate per veh North St - southern leg 1 0.0 0.018 5.7 LOS A 0.1 0.4 0.20 0.53 T1 13 0.0 0.018 5.1 LOS A 0.1 0.4 0.20 0.53 R2 34 0.0 0.045 7.5 LOS A 0.1 1.0 0.41 0.66 ach 55 0.0 0.045 6.6 LOS A 0.1 1.0 0.33 0.61 carrington Ave - eastern leg - - L2 45 0.0 0.104 5.7 LOS A 0.4 3.0 0.16 0.31 R2 62 0.0 0.104 5.8 LOS A 0.4 3.0 0.16 0.31 R2 187 0.6 0.104 3.4 NA 0.4 3.0 0.16 0.31

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:44:41 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 6 - North St - Carrington Ave.sip6

V Site: Site 7: Oberon St - Un-named Rd - Ross St (AM) Peak - Operational (2029)

Site 7: Oberon St - Un-named Rd - Ross St (AM) Peak - Operational (2029) Giveway / Yield (Two-Way)

	man to David		/- h ! - l								
Move Mov	OD	ormance - V Demand		Dog	Average	Level of	95% Back	of Outquin	Prop.	Effective	Avorage
ID	Mov	Total	HV	Deg. Satn	Average Delay	Service	Vehicles	Distance	Queued	Stop Rate	Average Speed
	1010 0	veh/h	%	V/C	sec		ven	m	Queucu	per veh	km/h
South	Ross St - s	outhern leg									
1	L2	52	2.0	0.067	5.9	LOS A	0.3	1.8	0.22	0.55	53.2
2	T1	22	0.0	0.067	5.1	LOS A	0.3	1.8	0.22	0.55	53.4
3	R2	11	0.0	0.067	6.6	LOS A	0.3	1.8	0.22	0.55	52.7
Appro	ach	84	1.3	0.067	5.7	LOS A	0.3	1.8	0.22	0.55	53.2
East: (Oberon St -	eastern leg									
4	L2	24	4.3	0.076	5.7	LOS A	0.1	0.8	0.06	0.15	56.6
5	T1	103	4.1	0.076	0.0	LOS A	0.1	0.8	0.06	0.15	58.3
6	R2	14	0.0	0.076	5.7	LOS A	0.1	0.8	0.06	0.15	56.2
Appro	ach	141	3.7	0.076	1.6	NA	0.1	0.8	0.06	0.15	57.8
North:	Un-named	Rd - northern	leg								
7	L2	11	0.0	0.023	5.7	LOS A	0.1	0.6	0.19	0.56	53.3
8	T1	6	0.0	0.023	5.0	LOS A	0.1	0.6	0.19	0.56	53.5
9	R2	8	0.0	0.023	6.8	LOS A	0.1	0.6	0.19	0.56	52.8
Appro	ach	25	0.0	0.023	5.9	LOS A	0.1	0.6	0.19	0.56	53.2
West:	Oberon St -	western leg									
10	L2	29	3.6	0.072	5.8	LOS A	0.2	1.6	0.13	0.24	55.6
11	T1	72	2.9	0.072	0.2	LOS A	0.2	1.6	0.13	0.24	57.3
12	R2	25	12.5	0.072	6.0	LOS A	0.2	1.6	0.13	0.24	54.6
Appro	ach	126	5.0	0.072	2.6	NA	0.2	1.6	0.13	0.24	56.3
All Vel	nicles	377	3.4	0.076	3.2	NA	0.3	1.8	0.13	0.30	55.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:49:28 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 7 - Oberon St - Un-named Rd - Ross St.sip6

V Site: Site 7: Oberon St - Un-named Rd - Ross St (PM) Peak - Operational (2029)

Site 7: Oberon St - Un-named Rd - Ross St (PM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Maxe	mont Dout		abialaa								
Move	OD	ormance - V Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	V/C	sec	0011100	veh	m	000000	per veh	km/h
South:	Ross St - s	outhern leg									
1	L2	59	1.8	0.064	5.9	LOS A	0.2	1.7	0.21	0.56	53.0
2	T1	5	0.0	0.064	5.7	LOS A	0.2	1.7	0.21	0.56	53.2
3	R2	15	0.0	0.064	7.2	LOS A	0.2	1.7	0.21	0.56	52.6
Approa	ach	79	1.3	0.064	6.1	LOS A	0.2	1.7	0.21	0.56	52.9
East: 0	Oberon St -	eastern leg									
4	L2	19	0.0	0.073	5.8	LOS A	0.1	0.7	0.07	0.12	57.0
5	T1	106	4.0	0.073	0.1	LOS A	0.1	0.7	0.07	0.12	58.5
6	R2	11	0.0	0.073	6.0	LOS A	0.1	0.7	0.07	0.12	56.4
Approa	ach	136	3.1	0.073	1.3	NA	0.1	0.7	0.07	0.12	58.1
North:	Un-named	Rd - northern	leg								
7	L2	14	0.0	0.054	6.0	LOS A	0.2	1.3	0.33	0.61	52.8
8	T1	12	0.0	0.054	5.6	LOS A	0.2	1.3	0.33	0.61	52.9
9	R2	24	0.0	0.054	7.5	LOS A	0.2	1.3	0.33	0.61	52.3
Approa	ach	49	0.0	0.054	6.6	LOS A	0.2	1.3	0.33	0.61	52.5
West:	Oberon St -	western leg									
10	L2	48	2.2	0.151	5.9	LOS A	0.6	4.0	0.17	0.24	55.5
11	T1	152	2.8	0.151	0.2	LOS A	0.6	4.0	0.17	0.24	57.0
12	R2	73	0.0	0.151	5.8	LOS A	0.6	4.0	0.17	0.24	55.0
Approa	ach	273	1.9	0.151	2.7	NA	0.6	4.0	0.17	0.24	56.2
All Ver	nicles	537	2.0	0.151	3.2	NA	0.6	4.0	0.16	0.29	55.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:49:29 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 7 - Oberon St - Un-named Rd - Ross St.sip6

igvee Site: Site 8: Albion St - Duckmaloi Rd (AM) Peak - Operational (2029)

Site 8: Albion St - Duckmaloi Rd (AM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - V	/ehicles								
Mov	OD	Demand	l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
E a a fu l		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: I	East: Duckmaloi Rd - eastern leg										
5	T1	53	8.0	0.028	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	38	58.3	0.035	6.3	LOS A	0.1	1.5	0.11	0.57	50.3
Appro	ach	91	29.1	0.035	2.6	NA	0.1	1.5	0.04	0.24	55.5
North:	Albion St - r	northern leg									
7	L2	26	76.0	0.035	6.6	LOS A	0.1	1.4	0.09	0.55	50.3
9	R2	6	16.7	0.035	6.6	LOS A	0.1	1.4	0.09	0.55	52.4
Approa	ach	33	64.5	0.035	6.6	LOS A	0.1	1.4	0.09	0.55	50.7
West:	Duckmaloi F	Rd - western	leg								
10	L2	3	0.0	0.002	5.5	LOS A	0.0	0.0	0.00	0.58	53.6
11	T1	23	0.0	0.012	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	26	0.0	0.012	0.7	NA	0.0	0.0	0.00	0.07	59.2
All Vel	nicles	149	31.7	0.035	3.1	NA	0.1	1.5	0.05	0.28	55.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:52:15 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 8 - Albion St - Duckmaloi Rd.sip6

abla Site: Site 8: Albion St - Duckmaloi Rd (PM) Peak - Operational (2029)

Site 8: Albion St - Duckmaloi Rd (PM) Peak - Operational (2029) Giveway / Yield (Two-Way)

Move	ment Perfo	ormance - \	/ehicles								
Mov	OD	Demanc	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Cost: [veh/h	%	v/c	sec		veh	m		per veh	km/h
East: I	Duckmaloi R	d - eastern le	eg								
5	T1	41	10.3	0.022	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	34	68.8	0.034	6.6	LOS A	0.1	1.5	0.17	0.56	49.8
Appro	ach	75	36.6	0.034	3.0	NA	0.1	1.5	0.07	0.25	54.9
North:	Albion St - r	orthern leg									
7	L2	27	50.0	0.077	6.4	LOS A	0.3	3.2	0.19	0.55	50.9
9	R2	33	71.0	0.077	7.9	LOS A	0.3	3.2	0.19	0.55	49.8
Approa	ach	60	61.4	0.077	7.2	LOS A	0.3	3.2	0.19	0.55	50.3
West:	Duckmaloi F	Rd - western	leg								
10	L2	9	11.1	0.006	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	44	2.4	0.023	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	54	3.9	0.023	1.0	NA	0.0	0.0	0.00	0.10	58.7
All Vel	nicles	188	35.2	0.077	3.8	NA	0.3	3.2	0.09	0.31	54.3

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SMEC AUSTRALIA PTY LTD (SYDNEY) | Processed: Saturday, 16 April 2016 4:52:15 PM Project: I:\projects\30011699 – Borg Panel Oberon TIA\SIDRA\Models\20160416\Site 8 - Albion St - Duckmaloi Rd.sip6